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Today we will describe the Jones/Ocneanu1 presentation of the HOMFLYPT polynomial.

1. The HOMFLYPT polynomial

In late September and early October 1984, the Bulletin of the AMS received research announce-
ments from Freyd–Yetter, Hoste, Lickorish–Millet, and Ocneanu. These were published all as the
same article2, because the work was done independently, each of the articles would have been pub-
lished if it were the only one, and they didn’t want to publish all four articles. All four works
construct the same invariant of knots, all four motivated by the Jones and Alexander(–Conway)
polynomials. The article gives in a few paragraphs four separate constructions — I will basically
follow Ocneanu’s, because it’s the closest to Jones’ construction (and to statistical mechanics).
Also, Przytycki and Traczyk independently found the same invariant via yet another derivation; it
wasn’t published until 19883. The invariant is often called “HOMFLY” or “HOMFLYPT” because
these are the most pronounceable acronyms of the various names. I know one person who likes to
add “Unknown” to the list — it really is the obvious generalization of Jones & Alexander, and so
probably was discovered by other people as well — and acronymize as “LYMPH TOFU.”

Here’s how Ocneanu did the construction. Let Bn denote the braid group on n strands Recall
from last time the following classical theorem of Alexander and Markov4:

Theorem 1.1 (Alexander). Every oriented link is the closure of a braid.
(Markov) Suppose that b ∈ Bn and b′ ∈ Bn′ are braids whose closures are equivalent as oriented

links. Then b and b′ are related by some sequence of “moves” of two types. Namely, for each b ∈ Bn,
the allowed moves are

“Type 1” or “conjugation”: b! gbg−1 for some g ∈ Bn.
“Type 2” or “stabilization”: b! bt±1

n ∈ Bn+1. �

Here tn denotes the crossing in Bn+1 between the nth and (n + 1)th strands, and we have the
standard embedding Bn ↪→ Bn+1 on the first n strands. Bn is generated by crossings t±1

1 , . . . , t±1
n−1

modulo the braid relation titi+1ti = ti+1titi+1.
Recall also the Hecke algebra Hn. It is generated by T1, . . . , Tn−1 module the braid relation

TiTi+1Ti = Ti+1TiTi+1 and the Hecke relation T 2
i = (q − 1)Ti + q. Equivalently, T−1

i = q−1Ti +
(q−1 − 1). There are standard embeddings Hn ↪→ Hn+1 on the obvious generators. Last time we
stated the following theorem of Ocneanu:

Theorem 1.2 (Ocneanu). For each ζ ∈ C, there is a unique linear functional trζ : Hn → C such
that:

“Normalization”: trζ(1) = 1

1Vaughan F. R. Jones. Hecke Algebra Representations of Braid Groups and Link Polynomials. Annals of Mathe-
matics, Second Series, Vol. 126, No. 2 (Sep., 1987), pp. 335–388. http://www.jstor.org/stable/1971403

2Freyd, P., Yetter, D., Hoste, J., Lickorish, W.B.R., Millett, K.. Ocneanu, A.: A new polynomial invariant of knots
and links. Bull. AMS 12, 239 (1985). https://projecteuclid.org/download/pdf_1/euclid.bams/1183552531

3Przytycki, J.H., Traczyk, P.: Invariants of links ofconway type. Kobe J. Math.,4,115 (1988)
4A. A. Markov, Uber die freie Aequivalenz geschlossener Zopfe, Mat. Sb. 1 (1935), 73–78
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“Cyclicity” or “conjugation”: trζ(ab) = trζ(ba)
“Markov” of “stabilization”: trζ(wTn) = ζ trζ(w) if w ∈ Hn.

Note then that trζ(wT
−1
n ) = trζ(w(q−1Ti + (q−1 − 1))) = (q−1ζ + (q−1 − 1)) trζ(w).

The idea is to match these with the Markov theorem. Consider the homomorphism πλ : Bn → Hn
sending ti 7→ λTi. Then define, for b ∈ Bn,

Iq,ζ(b) = µn trζ(πλ(b)).

Note that I(btn) = µλζI(b) and I(bt−1
n ) = µλ−1(q−1ζ + (q−1 − 1))I(b). Then the point is to tune

µ and λ so that

µλζ = 1 = µλ−1(q−1ζ + (q−1 − 1)).

If you can — and you obviously can, at least for generic q, ζ — then I will be invariant under
both types of Markov moves (the first because tr is cyclic, the second by the tuning). Then I is an
invariant of oriented links.

Definition 1.3. This I is the unnormalized HOMFLYPT polynomial. It’s called “unnormalized”
because I(unknot) = µ 6= 1. The normalized HOMFLYPT polnyomial is P = µ−1I. 3

Now, recall that in the Hecke algebra

q−1/2Ti − q1/2T−1
i = q1/2 − q−1/2

In terms of the representation πλ : λ−1ti 7→ Ti, we have

q−1/2λ−1ti − q1/2λt−1
i = q1/2 − q−1/2

Let’s set α = q−1/2λ = (1 + (1− q)ζ−1)−1/2, and set z = q1/2 − q−1/2. It should be clear that the
change of variables (q, ζ)→ (α, z) is generically locally invertible.

Suppose now that L = L+ is any oriented link, and take any positive crossing in it (a crossing in
an oriented link is positive if it satisfies the right-hand rule). Let L− be the link formed by reversing
that crossing, and L0 the link formed by smoothing the crossing (which has one more or one fewer
component than has L±.) If you understand the proof of the Alexander part of Theorem 1.1, you
can find a presentation of L = L+ as a braid such that the given crossing is a ti for some i, by
which I mean that L− and L0 are presented by replacing that ti by t−1

i or 1. Then we see that the
invariants of L+, L−, and L0 are related by the skein relation:

αP (L+)− α−1P (L−) = zP (L0)

Exercise 1. (1) Prove that P (−) is determined by the skein relation, together with the values
of P (Utn), where Utn is an unlinked disjoint union of n unknots. Actually, it is enough to
specify P (U).

(2) Prove that P (Utn) = ((α−1 − α)z−1)n−1.
(3) Conclude that for every link L, P (L) is a Laurent polynomial in α, z.
(4) Prove that I(L t L′) = I(L)I(L′).
(5) Prove that P (L#L′) = P (L)P (L′), where # denotes any connect sum (i.e. connect sum

any component of L to any component of L′).

Remark 1.4. The HOMFLYPT polynomial (for any normalization) is the universal polynomial
satisfying a skein relation, in the sense that you could consider a homogeneous three-variable
polynomial defined by

xP (L+) + yP (L−) = zP (L0)

for arbitrary x, y, z, and we’ve chosen to work in coordinates on P2 in which xy = 1. 3
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2. Specializations

Definition 2.1. The Alexander polynomial is the knot invariant with skein relation ∆(L+) −
∆(L−) = (q1/2 − q−1/2)V (L0). So this corresponds to the specialization α = 1, where we retain

z = q1/2 − q−1/2 as above. 3

This is Conway’s skein relation for the Alexander polynomial. Alexander defined his polynomial
in terms of the homotopy theory of the knot complement.

Remark 2.2. If you specialize α = q−1/2, then the invariant P ≡ 1 satisfies the skein relation. 3

Definition 2.3. The Jones polynomial is the knot invariant with skein relation q−1V (L+) −
qV (L−) = (q1/2 − q−1/2)V (L0). So this corresponds to the specialization α = q−1, where we

retain z = q1/2 − q−1/2 as above. 3

Most people recognize that “V ” stands for “Vaughan.” Vaughan used the letter “V” in his first
paper on the subject5 without

Exercise 2. For what values of α (or λ, or ζ, . . . ) does Ocneanu’s trace on H descend to the
Temperley–Lieb algebra T L =

⋃
T Ln?6

Hint: Prove that T L is the quotient of H by the relation

TiTi+1Ti + TiTi+1 + Ti+1Ti + Ti + Ti+1 + 1 = 0.

Take the trace of both sides.

Remark 2.4. The representations of H are parameterized by Young diagrams, just like those of
the symmetric group. The representations that satisfy the above relation, i.e. those that descend
to T L, are the ones with at most two rows. 3

Exercise 3. Recall that, back when we were studying the Potts model, we wanted the linear func-
tional ρ : T L → C satisfying PxP = ρ(x)P , where P was the product of odd Uis, up to some
normalization. Show that ρ(x) ∝ tr(xP ), and work out the normalizations.

Theorem 2.5 (Jones). If L has an odd number of components, V (L) is a Laurent polynomial in

q. If L has an even number of components, V (L) is q1/2 times a Laurent polynomial in q.

Exercise 4. Calculate the Jones polynomial of the trefoil and of its mirror image. Conclude that
the trefoil is not amphichiral, meaning not equivalent to its mirror.

Jones used his polynomial to prove a number of results about braid representations of knots:
obstructing the existence of a braid presentation in a small number of strands, obstructing am-
phichirality, . . . .

Definition 2.6. The specialization α = q−N/2 of the HOMFLYPT polynomial is the the quantum
SL(N)-invariant in the vector representation. 3

3. Generalizations

The braid group is an operad, because you can cable strands by replacing each strand by a bundle
of n strands, and putting some fixed braid along it. If you have any braid invariant, you can first
cable the strands in your braid and then apply the invariant.

5Vaughan F. R. Jones. A polynomial invariant for knots via von Neumann algebras. Bull. AMS. Volume 12,
Number 1, January 1985. https://projecteuclid.org/euclid.bams/1183552338.

6I think I have an arithmetic mistake somewhere in these notes, since the specialization P ; V would, if I did it
right, correspond to ζ =∞. Jones’ formulas, with U2

i = δUi and δ = q1/2 + q−1/2, are Ti 7→ q1/2Ui − 1 and the trace
on T L satisfies tr(wUi) = δ−1 tr(w), and I might be off by a sign somewhere.

https://projecteuclid.org/euclid.bams/1183552338
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Let’s apply HOMFLYPT polynomial. Because of the skein relation, we can understand a lot
about cabling just by understanding what happens when you cable the one-strand braid 1 ∈ B1.
Then the choice of cabling is clearly an element of Bn, but actually maps to Hn. And because
we’ll close up the braid, we only want conjugation classes in Hn, and there are as many of these
as there are Young diagrams with n boxes. This is just like in the symmetric group, and is
dual to the statement that the irreps of Hn are indexed by Young diagrams. It turns out that
there is a God-given assignment {Young diagrams} → {conjugacy classes in Hn} that deforms the
usual assignment from symmetric groups. Moreover, just like in the case of symmetric groups,
you can pick out a projection pΥ ∈ Hn, i.e. p2 = p, for each Young diagram Υ, and pq = 0 if
p and q correspond to different Young diagrams. This is the Peter–Weyl decomposition: Hn =⊕

irreps Υ IΥ ⊗ I∗Υ as a Hn-bimodule, and you can set pΥ to be the identity element in IΥ ⊗ I∗Υ. So

these are a complete set of orthogonal minimal projections (if q is any projection and p = pΥ, then
qp = p or qp = 0), and

∑
Υ pΥ = 1.

Anyway, the upshot of this is that for any n-strand cabling by some b ∈ Bn of any link L, the
cabling by b is the same as the cabling by

∑
Υ bΥpΥ, where bΥ ∈ C, and so it’s enough to understand

the cablings by the pΥs.

Definition 3.1. The link invariant “cable your link by pΥ and then apply the HOMFLYPT poly-
nomial” is the colored HOMFLYPT polynomial PΥ, where the Young diagram Υ is the color. 3

Usually people use other names. For example, the Young diagram that’s all one row is the trivial
representation of the symmetric group Sn, or the nth symmetric power representation of GL(N).
The Young diagram with just one column is the sign or antisymmetric power. You one-box Young
diagram is the vector representation of GL(N).

Exercise 5. Find the complete set of minimal projections in H2. There should be two of them
corresponding to the two Young diagrams with 2 boxes.

How about H3?

Exercise 6 (Hard). Show that in the Jones polynomial, it’s enough to consider Young diagrams with
at most one row. (Or at most one column, depending on your conventions.) This corresponds to the
representations of SL(2). The corresponding projections in T L are the Jones–Wenzl idempotents.

Exercise 7 (Harder). Show that for the quantum SL(N)-invariant, you only need Young diagrams
with at most N − 1 rows.

These colored SL(N)-invariants of links are given statistical mechanical interpretation in7.

7V.F.R. Jones. On knot invariants related to some statistical mechanical models. Pacific Journal of Mathematics.
Vol. 137, No. 2, 1989.
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