
3-manifold Invariants and TQFT’s

Sean Pohorence

January 2016

Topological quantum field theories (TQFT’s) can be motivated by physicists’ approach using
the path integral (partition function) in quantum field theory and statistical mechanics. In
this talk, we introduce the concept of a quantization functor and discuss when such an object
defines a TQFT. Then, we describe a particular quantization functor defined using invariants
of 3-manifolds in [3] and how, in certain cases, this functor defines a TQFT.

1 Quantization functors

Before jumping into the formalism of quantization functors, we provide some motivation for why
one would consider these objects.

1.1 Motivation and physics

We will begin with the following definition/joke (see [5]):

Definition 1.1.1. Physics is a part of mathematics devoted to the calculation of integrals of
the form

∫
g(x)ef(x)dx.

In the cases we are interested in, these integrals will be associated to a closed system, which
we take to be a closed (smooth, oriented) 3-manifold M . Usually the integrals are performed
over some very large space of fields on M denoted by Φ(M), but we will not focus on difficulties
of defining such an object. For now, we’ll just assume that these integrals work approximately
like integrals in a finite dimensional setting. We use the notation Z(M) to denote the integral
associated to M . In addition, we will sometimes want our integrals to depend on additional
parameters, i.e.

Z(~p,M) =

∫
Φ(M)

g(~p, x)ef(~p,x)dx.

We call this integral the partition function associated to M and the parameters ~p and think of
it as a function of these parameters.

The difficulty is that such an object is usually difficult to compute if Φ(M) is complicated
enough. In these notes, this happens when M is topologically interesting. We may hope to
compute Z(~p,M) in simple cases, such as when M is the three sphere. If M is topologically
complicated, we can try to cut M into simpler pieces. This idea is most easily visualized in the
lower dimensional case of closed surfaces, when it is possible to cut a surface Σ into a collection
of disks and cylinders (with holes). Once we have done this, we can then try to compute the
partition function of each piece and then combine each of these contributions to obtain Z(~p,M).
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However, this procedure as described above has a problem. The partition function was only
defined for a closed system (3-manifold). Once we have cut M into pieces, each piece will have a
boundary and integrating over these pieces requires choosing boundary conditions for our fields
on these boundaries. More precisely, we first decompose M as

M = M1 ∪M2 ∪ · · · ∪Mn

where each intersection Mi∩Mj is either empty or a disjoint union of closed surfaces. Then, for
each Mi we set a boundary condition on ∂Mi by choosing a fixed field ϕ on ∂Mi and perform
the integral

Z(~p,Mi, ϕ) =

∫
x∈Φ(Mi)

s.t. x|∂Mi
=ϕ

g(~p, x)ef(~p,x)dx.

We can then combine the integrals on each of the components to compute the partition function
for M .

To get a feel for this procedure, let’s examine the simplest non-trivial case when we cut M
into two pieces M1 and M2 along a surface Σ. Then the partition function for M can be written
as

Z(~p,M) =
∑

ϕ∈Φ(Σ)

Z(~p,M1, ϕ)Z(~p,M2, ϕ).

We can think of this formula as Fubini’s theorem on the space of fields Φ(M). Ignoring any
issues of convergence, this is just the formula for the dot-product of two vectors:

Z(~p,M) =
∑

ϕ∈Φ(Σ)

v(~p)ϕw(~p)ϕ = ~v(~p) · ~w(~p).

The next simplest case is when M is cut into three pieces M1, M2, and M3 along two surfaces
Σ and Σ′. In this case, ∂M2 = Σ∪Σ′ has two components and the partition function for M can
be written as

Z(~p,M) =
∑

ϕ∈Φ(Σ)

∑
ψ∈Φ(Σ′)

Z(~p,M1, ϕ)Z(~p,M2, (ϕ,ψ))Z(~p,Mn, ψ).

This is the formula for the evaluation of a bilinear form on two vectors:

Z(~p,M) =
∑

ϕ∈Φ(Σ)

∑
ψ∈Φ(Σ′)

v(~p)ϕM(~p)ϕψw(~p)ψ = ~v(~p)ᵀM(~p)~w(~p).

By thinking this way, we have translated the computation of Z(~p,M) into two problems.
First, we compute partition functions of topologically simpler 3-manifolds with boundary condi-
tions. Second, we combine these calculations using “linear algebra.” Formalizing this procedure
leads one to define quantization functors.

1.2 Quantization functors

We begin with the definition of a quantization functor. Let Bord23 be the category whose
objects are smooth, closed, oriented surfaces and whose morphisms are isotopy classes of smooth,
oriented, compact cobordisms between surfaces. We should note that the constructions in [3]
take place on a “decorated” bordism category, in which surfaces and their cobordisms come with
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additional data and structure.1 For now we will ignore these subtleties, as the general theory is
roughly the same without them.

Definition 1.2.1. A quantization functor is a functor

Z : Bord23 −→ VectC

satisfying the following properties.

i) Z(∅) = C.

ii) For any object Σ in Bord23 there is a non-degenerate, Hermitian, sesquilinear form 〈 , 〉Σ
on Z(Σ) such that if ∂M1 = ∂M2 = Σ,

〈Z(M1), Z(M2)〉Σ = Z(M1 ∪Σ −M2).

A couple remarks are necessary. First, we note that VectC may be replaced by ModR for
any commutative ring R with unit and conjugation operation (−) : R → R. Second, viewing a
3-manifold M with boundary ∂M = Σ as a cobordism from ∅ to Σ, we can think of Z(M) as
an element of Z(Σ) by setting

Z(M) := Z(M)(1) ∈ Z(Σ).

A quantization functor Z is cobordism generated if the elements Z(M) with ∂M = Σ generate
Z(Σ).

We now explain how the cutting and gluing procedure given in terms integrals and partition
functions in the previous section allows us to construct a cobordism generated quantization
functor from a certain type of 3-manifold invariantes.

1.2.2 The universal construction

Let Z(−) be an (complex-valued) invariant of closed, smooth, oriented 3-manifolds which, for
any such M , only depends on the diffeomorphism class of M . We say Z is multiplicative if, for
any M1 and M2,

Z(M1 qM2) = Z(M1)Z(M2)

and Z(∅) = 1. We say that Z is involutive if, for any M ,

Z(−M) = Z(M).

We should think of the invariant Z(M) as the value of the partition function on M . Given a
multiplicative and involutive invariant of 3-manifolds Z, we can construct a quantization functor
Z : Bord23 → VectC as follows. First, consider the functor F corepresented by the object ∅ in
Bord23

F (Σ) := HomBord23(∅,−)

which assigns to each Σ the set of cobordisms between ∅ and Σ. To a morphism N : Σ→ Σ′, F
assigns the map which is defined on any element M ∈ F (Σ) by

F (N)(M) = M ∪Σ N ∈ HomBord23(∅,Σ′)
1In particular, [3] deals with the bordism category whose objects are as above with the additional requirement

of a choice of p1 structure and the additional data of a banded link, and similarly for morphisms. For details,
see section 3.
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We can extend F to a functor F̃ : Bord23 → VectC by defining F̃ (Σ) to be the vector space gener-

ated by F (Σ) and defining F̃ in the natural way on morphisms. We will define the quantization

functor Z as a “quotient” of F̃ . For each object Σ in Bord23, we define Z(Σ) = F̃ (Σ)/V (Σ).

Here V (Σ) is linearly generated by the elements of the form aF̃ (M1) − bF̃ (M2) where a and b
are complex numbers and

aZ(M1 ∪Σ M
′) = bZ(M2 ∪Σ M

′)

for all M ′ with ∂M ′ = −Σ (if M1 and M2 have ∂M1 = ∂M2 = Σ we consider F̃ (M1) and F̃ (M2)

as elements in F̃ (Σ)). For a morphism N : Σ→ Σ′ in Bord23 we define Z(N) as the linear map

induced by F̃ (N). To check that this map is well defined, suppose that Σ is an object in Bord23

and that M1 and M2 are 3-manifolds bounding Σ which represent the same element in Z(Σ).
Then, for any morphism N : Σ→ Σ′ in Bord23 and for any M ′ with ∂M ′ = −Σ′ we see that by
assumption,

Z(M1 ∪Σ N ∪Σ′ M
′) = Z(M2 ∪Σ N ∪Σ′ M

′)

so Z(M1 ∪Σ N) = Z(M2 ∪Σ N) in Z(Σ′).

Proposition 1.2.3. The functor Z : Bord23 → VectC defined above is a quantization functor.

Proof. The fact that Z(∅) = C follows from the multiplicativity of Z since for any closed 3-
manifolds M,N ∈ Z(∅)

Z(M qN) = Z(M)Z(N).

In particular, Z(M qN) is linearly related to Z(M ′ qN) for any other choice of M ′. To check
that Z satisfies property (ii), for any object Σ in Bord23 we define a pairing on Z(Σ)×Z(Σ) by

〈Z(M), Z(M ′)〉Σ = Z(M ∪Σ −M ′).

This pairing is sesquilinear since

Z(− ∪Σ −M ′) = Z(−M ′)(−)

is a linear map and

Z(−(− ∪Σ −M)) = Z(− ∪Σ −M) = Z(−M)(−)

is conjugate linear. Similarly, Hermiticity follows from the fact that the invariant Z is involutive.

It is also immediate from the construction that the quantization functor Z is cobordism
generated. The property of being cobordism generated allows us to do two things.

Exercise 1.2.4. Show that if Z : Bord23 → VectC is a cobordism generated quantization functor,
then one can define natural linear maps

a) i : Z(−Σ)→ Z(Σ)∗,

b) m : Z(Σ)⊗ Z(Σ′)→ Z(Σq Σ′)

where Z(Σ)∗ is the dual vector space of Z(Σ). Show that the map m is injective.

Note that it is not always the case that the maps i and m are isomorphisms.
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1.3 Quantization functors and TQFT’s

In this section we discuss the relationsship between quantization functors and TQFT’s. We
begin with a definition.

Definition 1.3.1. Let Z : Bord23 → VectC be a cobordism generated quantization functor. We
say Z is involutive if the map i : Z(−Σ)→ Z(Σ)∗ is an isomorphism for all objects Σ and that
Z is multiplicative if the map m : Z(Σ)⊗ Z(Σ′)→ Z(Σq Σ′) is an isomorphism for all objects
Σ and Σ′.

We can now define a topological quantum field theory.

Definition 1.3.2. A topological quantum field theory (TQFT) is a cobordism generated quan-
tization functor which is both involutive and multiplicative.

A remark is necessary here. It is possible to treat Bord23 as a symmetric monoidal category,
with the monoidal operation given by disjoint union and the unit given by the empty surface.
Then, we see that a TQFT is a symmetric monoidal functor Z : Bord23 → VectC such that the
pairing given by

〈Z(M1), Z(M2)〉Σ = Z(M1 ∪Σ −M2)

is a Hermitian, unimodular, sesquilinear form.
In [3] certain invariants of 3-manifolds, which are denoted by θp, are used (via the universal

construction) to define quantization functors. The main result of the paper states when these
quantization functors are actually a TQFT’s. To prove this result they use the concept of a 1-
extended quantization functor. Before discussing the invariants θp and outlining the proof of this
result, we give an overview of 1-extended quantization functors and the relevant bicategories.

2 1-extended quantization functors

The category Bord23 has a natural extension to the bicategory Bord123 which is defined as follows.
Its objects are smooth, closed, oriented 1-manifolds and to each pair of objects Γ and Γ′ we
associate the bordism category whose objects are (isotopy classes of) smooth, oriented, compact
cobordisms from Γ to Γ′ and whose morphisms are (isotopy classes of) smooth, oriented, compact
cobordisms between these.2 In other words, Bord123 has objects, which are closed 1-manifolds,
morphisms, which are 2-manifolds with boundary, and morphisms of morphisms, which are 3-
manifolds with corners. Furthermore, all the information of Bord23 is contained in Bord123 as
the category of morphisms HomBord123(∅, ∅).

Our goal for this section is to understand what a 1-extended quantization functor

Zext : Bord123 −→ C

should be, where C is a bicategory and Zext is a (weak) 2-functor. To do this, we first must find
the appropriate extension of the category VectC to a bicategory.

2Of course, to really define Bord123 we would need to say what these are! There is some ambiguity in how to
define cobordisms between manifolds with boundary, but we won’t get into the details at this point. More on
this later.
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2.1 Algebroids and bimodules

Recall the definition of an algebroid over C.3

Definition 2.1.1. An algebroid over C is a C-linear category. That is, a (small) category Λ
whose hom-sets HomΛ(X,Y ) are C-vector spaces.

Algebroids should be thought of as the “categorification” of algebras, in particular an alge-
broid with one object is an algebra. We now review how some basic constructions on algebras
are generalized to algebroids.

Definition 2.1.2. Let Λ be an algebroid over C. A left (right) Λ-module is a C-linear functor
from Λ (Λop) to VectC. A bimodule for Λ× Λ′ is a C-linear functor from the product category
Λ× (Λ′)op to VectC. A morphism of left/right/bi-modules is a C-linear natural transformation
between the two functors. We denote the category of left Λ-modules by ΛMod, and similarly for
right/bi-modules.

Exercise 2.1.3. Show that if Λ (and Λ′) is an algebra that these definitions reduce to the usual
definitions for Λ-modules and Λ-linear homomorphisms.

If Λ is an algebroid over C, and M and N are left and right Λ-modules respectively, then we
can define the tensor product M ⊗Λ N to be the quotient of the C-vector space⊕

X

M(X)⊗C N(X)

(where the direct sum runs over objects in Λ) by the submodule generated by the relations

M(α)(u)⊗ v ∼ u⊗N(α)(v)

where u ∈ M(Y ), v ∈ N(X) and α ∈ HomΛ(X,Y ) for objects X,Y in Λ. Note that we have
“used up” all of the Λ-module structure when forming the tensor product, so the resulting object
is just a C-vector space. If M is a Λ× Λ′-bimodule and N is a Λ′ × Λ′′-bimodule, then we can
endow the tensor product M ⊗Λ N with the structure of a Λ× Λ′′-bimodule by setting

(M ⊗Λ′ N)(X,Y ) :=
⊕
Z

M(X,Z)⊗C N(Z, Y )

and
(M ⊗Λ′ N)(α, β) =

⊕
Z

M(α, idZ)⊗C N(idZ , β)

for (α, β) ∈ HomΛ(X,X ′) × HomΛ′′(Y
′, Y ). For convenience, we will occasionally use the fol-

lowing notation (see [3])

XMY := M(X,Y )

Y ΛX := HomΛ(X,Y )

αuβ := M(α, β)(u)

where M is a Λ× Λ′-bimodule, u ∈M(X,Z), α ∈ HomΛ(X,Y ), and β ∈ HomΛ′(W,Z). In this
notation, u ∈ XMZ , α ∈ Y ΛX , β ∈ ZΛ′W , and αuβ ∈ YMW . A good trick to remember the
funny order in Y ΛX is that ΛX := HomΛ(X,−) is a left Λ-module, so we would write Y (ΛX)
for the vector space Y ΛX .

Exercise 2.1.4. Let M be a left Λ-module and let N be the left Λ-module N := Λ⊗ΛM . Show
that M and N are isomorphic as Λ-modules, that is, there is a natural isomorphism between
the functors M and N .

3All of the following can also be defined when C is replaced by a commutative ring with unit.
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2.1.5 Morita equivalence

Morita equivalence of algebroids is defined exactly as in the case of algebras.

Definition 2.1.6. Two algebroids over C, Λ and Λ′ are Morita equivalent if there is a functor
F : ΛMod→ Λ′Mod which is part of a C-linear equivalence of categories.

Exercise 2.1.7 (for those who haven’t seen Morita equivalence before). Let A and B be commu-
tative C-algebras. Prove that A and B are Morita equivalent if and only if they are isomorphic
as algebras.

We now prove a technical result which will be useful in section 3. Let Λ be an algebroid over
C and let {Xi}i∈I be a family of objects in Λ. For each i ∈ I, choose an idempotent element in
the algebra XiΛXi and call it εi. We define the algebroid ∆ to have objects I and morphisms
given by

j∆i = εjXj
ΛXi

εi := {εj ◦ α ◦ εi ∈ Xj
ΛXi
|α ∈ Xj

ΛXi
}.

We now define two bimodules. Let E be the ∆× Λ-bimodule defined by

iEX = εiXiΛX := {εi ◦ α ∈ XiΛX |α ∈ XiΛX}.

Similarly, let E be the Λ×∆-bimodule defined by

XEi = XΛXi
εi := {α ◦ εi ∈ XΛXi

|α ∈ XΛXi
}.

Proposition 2.1.8. In the situation described above, suppose the idempotents {εi}i∈I generate
Λ as a two-sided ideal. Then E ⊗Λ E ∼= ∆ and E ⊗∆ E ∼= Λ as bimodules.

Proof. By the definition of ∆, the correspondence εjα ⊗ βεi 7→ εjαβεi defines an isomorphism

jE ⊗Λ Ei ∼= j∆i for every i, j ∈ I. Similarly, we can define a linear map ϕ : Y E ⊗∆ EX → Y ΛX
by αεi ⊗ εiβ 7→ αε2iβ = αεiβ. Then, by assumption, for each object Y in Λ, there are finitely
many βi ∈ Yi

ΛY and αi ∈ Y ΛYi
such that

idY =
∑
i

αiεiβi.

Then, we define a linear map f : Y ΛX → Y E ⊗∆ EX by

f(α) =
∑
i

αiεi ⊗ εiβiα.

We see that f provides a two-sided inverse to the map ϕ. It is obvious that that composition
ϕ ◦ f is the identity, and with some algebraic manipulations, the other composition is

f(ϕ(αεj ⊗ εjβ)) =
∑
i

αiεi ⊗ εiβiαεjβ =
∑
i

αiεiβiαεj ⊗ εjβ = αεj ⊗ εjβ

where we have used the fact that

αiεi ⊗ εiβiαεjβ = αiεi ⊗ εiβiαε2jβ = αiε
2
iβiαεj ⊗ εjβ = αiεiβiαεj ⊗ εjβ.
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2.2 The bicategory of algebroids

There is a nicer way to view this result using the language of bicategories. We start by con-
structing the bicategory AlgoidC. This will be the bicategory whose objects are algebroids over
C. To each pair of objects Λ and Λ′, we assign the category ΛModΛ′ of Λ × Λ′-bimodules.4

Composition of morphisms is given by the tensor product of bimodules. The morphisms in
the category of bimodules are sometimes called intertwiners (think of what it means to be a
natural transformation between modules). In this setting, proposition 2.1.8 can be restated as
the following.

Proposition 2.2.1. Under the hypotheses of proposition 2.1.8, the algebroids Λ and ∆ are
isomorphic in AlgoidC with isomorphisms given by E : Λ→ ∆ and E : ∆→ Λ.

This raises the question of how isomorphic objects in AlgoidC are related. We may hope
that when restricted to algebras it corresponds to the usual notion of isomorphism of algebras.
However, this is usually not the case.

Proposition 2.2.2. To algebroids over C are isomorphic if and only if they are Morita equiv-
alent.

Proof. Let Λ and Λ′ be isomorphic algebroids over C. Λ can be given the structure of a right
Λ-module, i.e. Λ ∈ ModΛ, and similarly Λ′ ∈ ModΛ′ . Suppose the isomorphism from Λ to Λ′ is
given by the Λ′ × Λ-bimodule I and the inverse morphism is given by the Λ× Λ′-bimodule J .
Then we see that the equivalence of categories between ΛMod and Λ′Mod is given by

ΛMod 3M 7→ I ⊗Λ M ∈ Λ′Mod

Λ′Mod 3 N 7→ J ⊗Λ′ N ∈ ΛMod

since J ⊗Λ′ I ⊗Λ M ∼= Λ⊗Λ M ∼= M and I ⊗Λ J ⊗Λ′ N ∼= Λ′ ⊗Λ′ N ∼= N .
Conversely, we see that if ΛMod and Λ′Mod are equivalent then for any algebroid Λ′′ the

subcategories ΛModΛ′′ and Λ′ModΛ′′ are also equivalent. The result now follows from the Yoneda
lemma.

We now finally come back to our original goal of defining 1-extended quantization functors.
First, observe that C is an object in AlgoidC, and that HomAlgoidC(C,C) is just the category of
vector spaces, VectC. In other words, just as we saw that Bord123 contained all the information
of Bord23 in a particular category of morphisms, AlgoidC contains all the information of VectC.
We will say that a 1-extended quantization functor is a (weak) 2-functor

Zext : Bord123 −→ AlgoidC.

2.3 The universal construction for 1-extended quantization functors

Recalling that the quantization functors we will encounter in section 3 will be defined from
3-manifold invariants using the universal construction, it is natural to ask if the universal con-
struction can be extended to construct a 1-extended quantization functor. We will briefly
describe this procedure here.

4If you haven’t seen this definition before, it may seem a little surprising. In particular, you may have guessed
that morphisms between algebroids would be defined as C-linear functors on the underlying categories, since
these correspond to morphisms of algebras. In this case, the following example may be helpful. For commutative
C-algebras A and B, we can use an algebra map ϕ : A → B to consider B as a right A-module (this is just
extension of scalars), so B is a B × A-bimodule. Conversely, given a B × A-bimodule structure on B, we can
define a map of algebras ϕ : A→ B to be the composition A→ B⊗AA ∼= B where the first map sends a 7→ 1⊗a.
Exercise 2.1.7 is a consequence of this.
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Recall that if Z is an involutive, multiplicative invariant of closed 3-manifolds then we can
construct a cobordism generated quantization functor

Z : Bord23 −→ VectC

by defining Z(Σ) to be the quotient of the vector space generated by 3-manifolds which bound
Σ by certain relations (see section 1.2.2). Now, we would like to define a way of assigning
smooth, closed, oriented 1-manifolds to algebroids over C. To such a 1-manifold Γ we assign
the following algebroid, denoted Zext(Γ). Its objects are given by (isotopy classes of) smooth,
compact, oriented surfaces Σ which bound Γ. The morphisms of Zext(Γ) are defined to be the
vector spaces

Σ2
Zext(Γ)Σ1

:= Z(Σ1 ∪Γ −Σ2).

Composition of morphisms is given by the following gluing procedure. Let Γ be a smooth, closed,
oriented 1-manifold and let Σ1, Σ2, and Σ be smooth, oriented surfaces such that ∂Σ1 = ∂Σ2 =
∂Σ = Γ. We will define a linear map

Σ2
Zext(Γ)Σ ⊗C ΣZ

ext(Γ)Σ1
→ Σ2

Zext(Γ)Σ1

by a constructing a cobordism between ΣA := Σ1∪Γ (−Σ)qΣ∪Γ (−Σ2) and ΣB = Σ1∪Γ (−Σ2).
To construct this cobordism, first Consider the 3-manifold with boundary

M̃ = (Σ1 × [0, 1]) ∪Γ×[1/2,1] (−Σ2 × [0, 1]) .

We should think of M̃ as gluing Σ1 × [0, 1] and −Σ2 × [0, 1] along the left and right sides of
Γ× Y where Y is the letter “Y” obtained by gluing two intervals together along a subinterval.
The boundary of M̃ is given by the boundaries of these two pieces, plus a piece corresponding
to the top of the “Y”

∂M̃ =
(
Σ1 ∪Γ×{0} (Γ× [0, 1/2]) ∪Γ×{1/2} (Γ× [0, 1/2]) ∪Γ×{0} (−Σ2)

)
q
(
Σ1 ∪Γ (−Σ2)

)
.

We can then glue in the 3-manifold with boundary Σ × [0, 1] along the top part of the “Y” to
obtain

M = M̃ ∪ϕ Σ× [0, 1]

where ϕ : Γ× [0, 1]→ (Γ× [0, 1/2]) ∪Γ×{1/2} (Γ× [0, 1/2]) is the attaching map defined by

ϕ(x, y) =

{
(x, y) : 0 ≤ y ≤ 1/2
(x, 1− y) : 1/2 ≤ y ≤ 1.

We can then check that ∂M has two disjoint components given by −ΣA and ΣB . This gives
a linear map Z(ΣA) → Z(ΣB). To obtain our desired map, we precompose with the natural
linear map m : Z(Σ1 ∪Γ −Σ)⊗C Z(Σ ∪Γ −Σ2)→ Z(ΣB).

This defines the algebroids Zext(Γ) for each object Γ in Bord123. Next, for each pair of
objects Γ and Γ′ and each smooth, compact, oriented surface Σ with ∂Σ = −Γ q Γ′ we define
the Zext(Γ′)× Zext(Γ)-bimodule Zext(Σ) by setting

Σ2Z
ext(Σ)Σ1 := Z(Σ1 ∪Γ Σ ∪Γ′ −Σ2)

for any object Σ1 in Zext(Γ) and Σ2 in Zext(Γ′).
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Exercise 2.3.1. Define the bimodule structure on Zext(Σ). That is, define linear maps

Σ′2
Zext(Γ′)Σ2

⊗C Σ2
Zext(Σ)Σ1

→ Σ′2
Zext(Σ)Σ1

and

Σ2
Zext(Σ)Σ1

⊗C Σ1
Zext(Γ)Σ′1

→ Σ2
Zext(Σ)Σ′1

where ∂Σ′2 = Γ′ and ∂Σ′1 = Γ. You will need to use a gluing procedure similar to the one above.

We now must define how Zext behaves on intertwiners of bimodules. First, we define a
cobordism of manifolds with boundary. Let Σ1 and Σ2 be smooth, compact, oriented surfaces
with ∂Σ1 = ∂Σ2 = −ΓaqΓb. A cobordism between Σ1 and Σ2 is the a 3-manifold M such that

∂M =
(
− Σ1 q Σ2

)
∪ϕ
(
(Γa × [0, 1])q (Γb × [0, 1])

)
where the attaching map ϕ glues one copy of the boundary Γa to Σ1 and the other to Σ2, and
similarly for Γb in such a way that all orientations agree. Now suppose we are in the situation
described here. We must define C-linear maps of vector spaces

Σb
Zext(M)Σa

: Σb
Zext(Σ1)Σa

→ Σb
Zext(Σ2)Σa

.

for any objects Σa in Zext(Γa) and Σb in Zext(Γb). Recalling that we have defined

Σb
Zext(Σ1)Σa

= Z(Σa ∪Γa
Σ1 ∪Γb

−Σb)

and

Σb
Zext(Σ2)Σa

= Z(Σa ∪Γa
Σ2 ∪Γb

−Σb)

we can define Σb
Zext(M)Σa := Z(Σb

MΣa) where

Σb
MΣa := (Σa × [0, 1]) ∪Γa×[0,1] M ∪Γb×[0,1] (−Σb × [0, 1])

so that
∂(Σb

MΣa) = −
(
Σa ∪Γa Σ1 ∪Γb

−Σb
)
q
(
Σa ∪Γa Σ2 ∪Γb

−Σb)
)
.

This defines the functor Zext, though there are a number of compatibility conditions left to
be checked which we will not discuss here. Note that the algebroid Zext(∅) is very far from being
equal to C. In particular, is has many objects (each corresponding to a closed surface). This
will be a key feature of the extended theory, allowing us to prove the following important result.
This will allow us to reduce the problem of showing that a quantization functor is multiplicative
to proving that Zext(∅) and C are Morita equivalent. This will be discussed further in section 3.

Proposition 2.3.2. Let Σ1 and Σ2 be surfaces with boundary ∂Σ1 = −Γ1 q Γ and ∂Σ2 =
−Γq Γ2. Then the natural map

−Z
ext(Σ2)− ⊗Zext(Γ) −Z

ext(Σ1)− → −Z
ext(Σ1 ∪Γ Σ2)− (∗)

is an isomorphism of Zext(Γ2)× Zext(Γ1)-bimodules.

Partial proof. We will show that (∗) is an epimorphism. In particular, on each component, we
will construct a linear map

s : ΣcZ
ext(Σ1 ∪Γ Σ2)Σa → ΣcZ

ext(Σ2)Σb
⊗Zext(Γ) Σb

Zext(Σ1)Σa

10



which is a section for (∗). Define Σ to be to surface Σa ∪Γ1
Σ1 with boundary Γ. Consider

the cobordism between Σ and itself formed by gluing the product Σ× [0, 1] along the boundary
component Γ× [0, 1]. This gives an element ε ∈ ΣZ

ext(Σ1)Σa . Now, Consider the linear map

ΣcZ
ext(Σ1 ∪Γ Σ2)Σa → ΣcZ

ext(Σ2)Σ

given by the identity cobordism. We can compose this map with the map −⊗Zext(Γ) ε to obtain
a map the map s. Then, recalling the definition of (∗) we see that the composition of s with
this map is the identity cobordism.

Exercise 2.3.3. Draw the construction of the cobordism s from the proof above and convince
yourself that s is indeed a section.

3 TQFT’s from the Kauffman bracket

We will now discuss a specific class of examples of 3-manifold invariants and outline the proof
that, via the universal construction, we can use them to construct multiplicative quantization
functors. It is proved in [3] that these quantization functor are also involutive, hence define
TQFT’s. We will mostly give a “highlight reel” presentation of these results, omitting some
proofs and finer details of the constructions.

3.1 The invariants θp

Our first step in defining invariants of 3-manifolds follows [4]. Recall from Piotr’s talks that
any closed (smooth, oriented) 3-manifold can be obtained from surgery on a framed link5 in S3.
Using this fact, we can proceed to define invariants of closed 3-manifolds by defining invariants
of framed links in S3 (which must be stable under certain moves between links which do not
change the diffeomorphism type of the resulting 3-manifold). In the following, R = Z[A,A−1]
will be the ring of Laurent polynomials with integer coefficients.

Definition 3.1.1. Let M be a closed 3-manifold. The Jones-Kauffman module K(M) is the R-
module generated by isotopy classes of framed links in M , quotiented by the following relations:

,

Lq U = −(A2 +A−2)L

where L is any link and U is the trivial unlink.

One may complain that these are relations for link diagrams in the plane, but since every
framed link in S3 may be represented unambiguously by such a link diagram, and since these
relations are locally defined, we see that the definition makes sense.

Using these relations we can show that K(M) is generated by unlinks which bound some
interesting topology in M . For example, K(S3) ∼= R where we can define this isomorphism by
setting value of the empty link to 1. Similarly, we can see that K(D2 × S1) ∼= R[z], where the
generator z corresponds to the “standard link” L = {0} × S1 ⊂ D2 × S1. We should note here
that L is given the trivial framing (i.e. no twists).

5In [4] these are referred to as “banded links.”
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Definition 3.1.2. Given a framed link L ⊂ S3, we can choose an embedding of solid tori
D2 × S1 into S3 such that this map sends each standard link to a component of L. We then
define the meta-bracket

〈−, . . . ,−〉L : R[z]⊗n ∼= R[z1, . . . , zn]→ R

by setting 〈b1, . . . , bn〉 to be the element of R corresponding to the link L.

Note that this is a linear function on R[z1, . . . , zn]. We will now use the meta-bracket to
construct an invariant of 3-manifolds. Let t : R[z] → R[z] be the map induced by one positive
twist (using the right hand convention). Define the bilinear map

〈−,−〉 : R[z, w]→ R

to be the meta-bracket associated to the Hopf link (where each component has no twists) and
the linear map

〈−〉 : R[z]→ R

to be the meta-bracket associated to the unknot with no twist. It is a nice exercise to verify,
using our definitions, that 〈b, 1〉 = 〈b〉 for any b ∈ R[z].

Proposition 3.1.3. Let B be a commutative R-algebra. Suppose we are given an element
Ω ∈ R[z]⊗B ∼= B[z] such that

i) 〈t±1(Ω), t±1(b)〉 = 〈t±1(Ω)〉〈b〉 for all b ∈ R[z],

ii) 〈t±1(Ω)〉 is invertible in B.

Then, for all framed links L ⊂ S3, the number

θΩ(L) =
〈Ω, ...,Ω〉L

〈t(Ω)〉b+(L)〈t−1(Ω)〉b−(L)
∈ B,

where b±(L) are the numbers of positive and negative eigenvalues of the linking matrix6 of L, is
an invariant of the manifold ML obtained from L via surgery.

The proof follows from checking that θΩ(L) does not change under Kirby moves. This
proposition appears in [4], where they use this, along with the following theorem, to construct
invariants of 3-manifolds.

Theorem 3.1.4. Let p ≥ 3 and Bp = R[p−1]/φ2p(A) where φd(x) is the d-th cyclotomic
polynomial. Then there are elements Ωp ∈ Bp which satisfy conditions (i) and (ii) of proposition
3.1.3, hence the numbers θp(L) = θΩp

(L) are invariants of the manifold ML.

We would like to use the universal construction to obtain a quantization functor from these
invariants. However, in order to do so we need to check a few things. First of all,we would
need to define a conjugation map on the rings Bp. Furthermore, we would need to check that
the invariants θp are involutive and multiplicative. This last requirement is easy to arrange,
since the invariants were only defined on connected 3-manifolds (these are the only ones we can
obtain via surgery on a framed link in S3), so we can just define an invariant on all 3-manifolds
Ip(M) which is generated multiplicatively by θp(Mi) on each component Mi of M .

6The linking matrix lkij of L is defined to have (i, j)-th entry equal to the linking number of the i-th and
j-th components of L. While lkij depends on an orientation of L, the numbers b±(L) do not.

12



To define the conjugation operation on Bp, we observe that A is a primitive 2p-th root of
unity in this ring, so we may define the conjugation action on Bp by sending A 7→ A−1. Using the
formula for θp, we can then check that these invariants are involutive since under an orientation
reversal, the skein relation undergoes and interchange of A and A−1.

The invariants of 3-manifolds defined in [3] are derived from the invariants θp, but are slightly

more complicated. They introduce a Bp algebra B̃p which contains an additional variable κ (it is
connected to A via the relation κ6 = A−6−(p+1)p/2). They then define invariants of 3-manifolds
Jp(M) which additionally depend on a p1 structure7 on M in terms of the invariants θp:

Jp(M) = f(A,A−1, κ)Ip(M)

where f(A,A−1, κ) is polynomial in A, A−1, and κ which depends on the choice of p1 structure
on M .

Finally, we note that this definition can be extended to an invariant of 3-manifolds with an
embedded framed link, which we denote as a pair (M,K). We first define

θp(ML,K) :=
〈Ω, . . . ,Ω, z, . . . , z〉L∪K
〈t(Ω)〉b+(L)〈t−1(Ω)〉b−(L)

.

Then, we can define Ip(M,K) and Jp(M,K) as above in terms of the invariants θp(ML,K).
In summary, we have defined invariants of 3-manifolds with p1 structure and an embedded

link, which we will refer to as decorated 3-manifolds. Using an analogue of the universal con-
struction, we can define the quantization functor Zp and the 1-extended quantization functor
Zext
p which are generated by the invariants Jp. Note that in this case, the category Bord23

and the bicategory Bord123 will be modified to include surfaces which contain a number of em-
bedded intervals and cobordisms between such surfaces which contain an embedded link which
must intersect the boundary surface in these intervals. The codomain of these functors has also
changed, from vector spaces of algebroids over C to modules or algebroids over B̃p. We will now
review the argument in [3] used to show that, for certain values of p, Zp is a TQFT.

3.2 The Temperley-Lieb algebroid and idempotents

Recall from proposition 2.1.8 that if we can find a set of generating idempotents {εi}i∈I in
an algebroid Λ, then that algebroid is Morita equivalent to an algebroid ∆ whose objects are
elements of the index set I. Also recall from 2.3.2 that in order to show the quantization functor
Zp is multiplicative, it is enough to show that Zext

p (∅) is morita equivalent to the trivial algebroid

over B̃p. Our goal now is to find a generating set of idempotents for the algebroid Zext
p (∅). After

doing so, the strategy in [3] is to show that this set has one element and the algebra ∆ is just

B̃p.
The method for identifying these idempotent elements employed in [3] is to find idempotents

in another algebroid and then showing how map these elements into Zext
p (∅).

Definition 3.2.1. The n-th Temperley-Lieb algebra TLn over a commutative ring R is the

7We will not discuss this in detail here. p1 structures can be though of as homotopy classes of trivializations
of the “double tangent bundle” E = TM ⊕ TM . The quantum field theory defined by Witten in [6] construct
invariants of 3-manifolds which also depend on a choice of p1 structure. For more details, see [6] and [2].
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algebra generated by elements U1, . . . , Un−1 subject to the relations

UiUi+1Ui = Ui,

UiUi−1Ui = Ui,

UiUj = UjUi for |i− j| > 1,

U2
i = δUi for some fixed δ ∈ R.

We can think of elements of TLn as sets of non-crossing lines in a square between sets of n
points placed on the top and bottom sides. In this picture, the generators Ui are described by
n − 2 vertical lines between points labeled by 1, . . . , i − 1, i + 2, . . . , n and a cap (cup) joining
the i-th and (i + 1)-st points on the bottom (top) side. The multiplication operation in this
description is given by vertical composition. The relations UiUi+1Ui = Ui and U2

i = δUi can be
displayed as the following pictures (taken from [1], which contains other helpful pictures).

There is an operation tr on TLn called trace which counts the number of “identity” portions of
an element (in the pictorial version, it counts the number of vertical lines). Alternatively, for
any element of TLn, attach the top and bottom points in the corresponding picture with curves.
This produces a link in the plane, and the trace counts the number of components of this link
(see [1]).

There is another description of TLn which connects it to the preceding discussion. Consider
(n, n) tangles in D2 × [0, 1]. Such objects are given by braids between n points, and the set of
braids is given by elements of the braid group Bn. If we then consider the Jones-Kauffman skein
module generated by such braids, we see that it is exactly the Temperley-Lieb algebra TLn over
the algebra R where we have chosen δ = −(A2 + A−2). We have associated the element Bi in
the braid group with the element AUi +A−1 in TLn using the skein relations. We can use this
description of TLn to define its categorification.

Definition 3.2.2. The Temperley-Lieb algebroid TL over an R-algebra B has objects n ∈ N
and morphisms mTLn given by K(D2× [0, 1], (am, an))⊗RB, the Jones-Kauffman skein module
(with coefficients in B) on framed links in D2 × S1 which intersect the “top” boundary in m
intervals and intersect the “bottom” boundary in n intervals.

Let S2
n denote the 2-sphere with n embedded intervals. In the case when B = B̃p, we can

define a linear map

nTLn → S2
n
Zext
p (∅)S2

n
.

To see how this is done, first observe that an element u ∈ nTLn is given by the class of a link
K ⊂ D2 × [0, 1] which intersects each boundary D2 × {0}, D2 × {1} in n intervals. We can
embed such a link into S2 × [0, 1] along the embedding of D2 × [0, 1] in S2

n × [0, 1] (where we
can perform an isotopy on the boundary spheres to ensure that the link K is mapped to a link
which intersects each boundary S2

n in the given intervals).
We now quote a result from [3] about existence of idempotents in TL.
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Proposition 3.2.3. Let TL be the Temperley-Lieb algebroid over B̃p. If p ≥ 4 is even, then
there exist idempotent elements fn ∈ nTLn for 0 ≤ n ≤ (p− 2)/2 such that, for each x ∈ nTLn,

fnx = xfn = tr(x)fn.

The trace identity given in this proposition is enough to uniquely specify these idempotent
elements, and there is a recursive formula for the fn due to Wenzl, which is described in [3].

3.3 Morita equivalence of Zext
p (∅) and B̃p and other results

We now state a subset of the main results from [3] which show that Zext
p (∅) and B̃p are Morita

equivalent, hence the functor Z defines a TQFT. Denote the image of the idempotent fn ∈ nTLn
in S2

n
Zext
p (∅)S2

n
by f ′n.

Theorem 3.3.1. If p ≥ 4 is even, Zext
p (∅) is generated by the idempotent elements f ′n for

0 ≤ n ≤ (p− 2)/2.

Proposition 3.3.2. If p is even, then the elements f ′n = 0 for n > 0 and f ′0 is in the ideal
generated by 1∅ ∈ ∅Zext

p (∅)∅.

These two results are provided (along with more general statements) in Theorem 3.4 in [3].

Corollary 3.3.3. If p ≥ 4 is even, then Zext
p (∅) is generated by the single idempotent 1∅.

Applying proposition 2.1.8 we have the following corollary.

Corollary 3.3.4. If p ≥ 4 is even, then Zext
p (∅) is Morita equivalent to the algebra ∆ =

∅Z
ext
p (∅)∅.

Since ∅Z
ext
p (∅)∅ = Zp(∅) = B̃p, we see that, under the above hypotheses, Zext

p (∅) is Morita

equivalent to B̃p. The following is then a corollary of proposition 2.3.2.

Corollary 3.3.5. If p ≥ 4 is even, then the quantization functor Zp is multiplicative.

The following also appears in [3] as a consequence of Theorems 1.14 and 1.15.

Theorem 3.3.6. For any p, the quantization functor Zp is involutive.

Finally, we may quote a portion of the Main Theorem 1.4 in [3].

Theorem 3.3.7. If p ≥ 4 is even, then the quantization functor Zp is a TQFT.

We should now investigate why (if?) this TQFT is equivalent to the one defined by witten
in [6].
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