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Today continues the story of the Potts model, based on Jones’ notes1, Baxter’s book2, and the
original Temperley–Lieb paper3.

1. Potts model and Temperley–Lieb algebra

Last time I introduced the Potts model, which is the statistical mechanical model on a graph G
in which each vertex carries one of N colors (the “spins”), and each edge has a Bolztmann weight

w(σ, σ′) = 1 + vδ(σ, σ′)

where σ, σ′ are the values of the state at the two ends of the edge. What we’re interested in
understanding is the partition function

ZG(v,N) =
∑

states:vertices→spins

∏
edges

w.

As a warm-up, let’s consider the one-dimensional case, and be more general, allowing arbitrary
Boltzmann weights:

Example 1.1. There’s only one type of one-dimensional lattice, and it’s the same whether you
decide that the sites are the edges of the vertices (since you can always move to the Poincaré dual
lattice). Suppose that there are N possible spins, and that the only interactions are on adjacent
vertices. Then the Boltzmann weights are a N ×N matrix W with nonnegative entries. Think of
W as an endomorphism of V = CN and let’s take periodic boundary conditions. Then if there are
m sites,

Z(T ) = trVW
m

As m→∞, this is going to be dominated by the largest eigenvalue of W :

free energy per site = largest eigenvalue of W

So the problem is solved if you know how to relate the largest eigenvalue for some matrix with the
largest eigenvalue for the matrix formed by raising every entry of your original matrix to the power
1/T . Anyway, the point is that it’s “just” a problem of finding the spectrum of an operator (and,
in fact, the largest eigenvalue). 3

Returning to the Potts model, let’s consider the problem on an m×n lattice (with free boundary
conditions). Set V = CN .

The strategy will be to try to turn this into the one-dimensional spectral problem like in Ex-
ample 0.1. So let’s consider each (length n) row to be a single “atom,” which can take any of Nn

1Vaughan F. R. Jones. In and around the origin of quantum groups. http://arxiv.org/abs/math/0309199
2 Baxter, Rodney J. Exactly solved models in statistical mechanics. Academic Press, Inc. [Harcourt Brace

Jovanovich, Publishers], London, 1982. xii+486 pp. ISBN: 0-12-083180-5. https://physics.anu.edu.au/theophys/
_files/Exactly.pdf

3Temperley, H. N. V.; Lieb, E. H. Relations between the “percolation” and “colouring” problem and other graph-
theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem. Proc.
Roy. Soc. London Ser. A 322 (1971), no. 1549, 251–280. http://dx.doi.org/10.1098/rspa.1971.0067
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spins. So its vector space is V⊗n. A typical basis vector of V⊗n is a list of n spins ~σ = (σ1, . . . , σn).
What’s the energy of m rows? Actually, we just want the exponentiated energy.

Each row itself contributes an exponentiated energy of

Ehorizontal(σ) =

n−1∑
i=1

Kδ(σi, σi+1)

and two adjacent rows also contribute an energy of

Evertical(σ, σ
′) =

n∑
i=1

Kδ(σi, σ
′
i)

Set A to be the Nn × Nn diagonal matrix whose σth entry is expEhorizontal(σ), and B to be the
Nn ×Nn whose (σ, σ′)th entry is expEvertical(σ, σ

′).

Exercise 1. Show that the partition function is

Z = ξtNn(AB)m−1AξNn

where ξNn is the length-Nn (column) vector which is all 1s, and ξtNn is its transpose.

So we’re interested in spectral problems related, for example, to AB.
Let g be the N ×N matrix which is all N−1/2s, i.e. g = N−1/2ξNξ

t
N where ξN is the length-N

all-1s vector. Bear with me for the funny normalizations — there’s a reason I want them. For
i = 1, . . . , n, set

U2i−1 = 1N ⊗ · · · ⊗ 1N ⊗ g ⊗ 1N ⊗ · · · ⊗ 1N

where 1N is the unit N ×N matrix and the g, thought of as a map V → V, is in the ith spot. So
U2i−1 acts on V⊗n. Then

B =

n∏
i=1

(v +N1/2U2i−1).

This follows from the case when n = 1, in which case I’m claiming that

exp
(
Kδ(σ, σ′)

)
= (eK − 1)δ(σ, σ′) +N1/2N−1/2

Let f be the N2 × N2 diagonal matrix whose (σ, σ′)th diagonal entry (where now the ordered
pair (ς, ς ′) ∈ {spins}×2 parameterizes the column of the matrix, and not the matrix entry, since I

already said it was diagonal) is N1/2δ(ς, ς ′). For i = 1, . . . , n− 1, set

U2i = 1N ⊗ · · · ⊗ 1N ⊗ f ⊗ 1N ⊗ · · · ⊗ 1N

where the f , thought of as a map V⊗2 → V⊗2 is in the ith and i+ tth spots. So U2i acts on V⊗n.
Then

A =

n−1∏
i=1

(1 +N−1/2vU2i).

This follows from the case when n = 2, which I leave to you.
Now, the point of the funny normalizations is that

UiUi±1Ui = Ui.

We also have

U2
i = N1/2Ui

and

UiUj = UjUi, |i− j| ≥ 2

where in these relations i, j = 1, . . . , 2n− 1 (except U0 and U2n are undefined. . . ).
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Definition 1.2. The 2nth Temperley–Lieb algebra TL2n is the unital associative algebra generated
by U1, . . . , U2n−1 with the above relations. 3

The point is that the Potts model furnishes a representation of Temperley–Lieb algebra.

Exercise 2. In TL2n, set
R = N−n/2U1U3 . . . U2n−1.

Prove that there is a unique linear functional τ on TL2n−1 such that

RXR = τ(X)R

for all X ∈ TL2n−1. For example, τ(1) = 1.

Exercise 3. In the Potts representation, R = N−nξNnξtNn, τ(X) = N−nξtNnXξNn, and Z =
Nnτ(ABA . . . BA).

Warning 1.3. The functional τ can be hard to evaluate. 3


	0. Potts model and Temperley–Lieb algebra

