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1 Genera

A major goal of algebraic topology has been the classification of manifolds. To classify manifolds, we define
manifold invariants, of which the Reshetikhin-Turaev invariants are one example. I want to focus today on
a different kind of classification for a different kind of manifold. Let’s take manifolds with some sort of extra
structure on their tangent bundles, and classify them up to cobordism that preserves that structure. The
set of cobordism classes forms a ring, where

[M] + [M'] = [M U M|

[M] - [M') = [M x M].

One approach to manifold asks: what are these rings? Many of them have been calculated by Milnor, Quillen,
and others. In the unoriented cobordism ring, MO, every manifold is 2-torsion (the cylinder M x [0,1] is
a cobordism between M LI M and (), and we have

MO, =Fy[{z; i # 27 —1}].
The complex cobordism ring MU, is torsion-free and satisfies
MU, ® Q = Q[{CP"}].
The only torsion in the oriented cobordism ring M SO, is 2-torsion. The rest looks like
MSO, ® Q = Q[{CP*"}].

These theorems were mostly proved by finding cobordism invariants of manifolds. Often, such invariants
can be found in the manifold’s characteristic numbers. Recall that a vector bundle £ — B has characteristic
classes:

e If F is complex, there are Chern classes ¢;(E) € H*(B;Z).
e If F is real, there are Stiefel-Whitney classes w;(E) € H'(B;F»).
e If F is real and oriented, there are Pontryagin classes p;(E) € H*(B;Z).

For a complex manifold M?", one can then define Chern numbers as follows. Let I = (i ) be a sequence of
natural numbers with > si; = n; then the corresponding Chern number is

er[M] = ([T es(Tha)'=, [M])
Thom proved that

Theorem 1.1. Two complex manifolds are complex cobordant if and only if they have the same Chern
numbers.



Similar theorems hold for real manifolds and the Stiefel-Whitney numbers, and oriented real manifolds
and the Pontryagin and Stiefel-Whitney numbers.

Now let’s turn to the general problem of finding all the cobordism invariants. Here’s one not on the list
so far: if M is an oriented 4n-manifold, then the cup product on H?"(M;Z) is a symmetric bilinear form,
and one can prove that its signature o(M) is an invariant of oriented cobordism. By the above, (M) is
some linear combination of Pontryagin numbers — but what? The answer, discovered by Hirzebruch, is a
little unusual at first. Consider the power series

The infinite product
fz)f(z2)- -

is invariant under permutations of the z;, so it can be written as a power series in the elementary symmetric
polynomials:
p1 o Tp2 —pi
f(z1)f(z2) -+ = L(p1,p2, ) = 1+§+T1+"'
where p; is the ith elementary symmetric polynomial in the z;. Write L,, for the degree n component of this
expression. Given an oriented 4n-manifold M, we reinterpret L, as an expression in terms of the Pontryagin

classes of TM, and define L,,[M] to be the corresponding Pontryagin number.
Theorem 1.2 (Hirzebruch). We have L, [M] = o(M).

For example, take M = CP?, which clearly has signature 1. Since TM is complex, we can calculate its
Pontryagin classes from its Chern classes:

c(TM)= (1+x)*® where H*M = Z[z]/(z*), x = c1(O(-1)).
p1(TM) = ¢ (TM)? — 2co(TM) = (3z)* — 2 - 322 = 32°.
Thus p1[M]/3=1=o(M).
One very nontrivial consequence of this theorem is integrality results for the Pontryagin numbers: since

the signature is an integer, p; must always be divisible by 3, 7p, — p? by 45, and so on.
Notice also that this sequence (L;,) is multiplicative: writing L = > L, if we have

> pi= (Z pi;) (Z pi;’) ;

then L(p;) = L(p;)L(pY). Of course, this formula holds for the Pontryagin classes of a sum of two bundles
— for example, the Pontryagin classes of T(M x M') =2 TM @& TM'. As a result, we have defined a ring
homomorphism L : M SO, — Q.

Definition 1.3. A genus (plural genera) is a ring homomorphism from a cobordism ring to some other
ring.

In other words, a genus is a cobordism invariant for manifolds with whatever structure, that sends disjoint
unions to sums and products to products. The above considerations have shown us how to construct genera
from any power series with constant term 1, at least starting from cobordism rings generated by some kind
of elementary symmetric polynomials, that is, MO,, MU,, and M SO, ® Q. A few other examples:

e Taking f(z) = 7=2= and letting the Chern classes be the elementary symmetric polynomials in z;
gives the Todd genus Td : MU, — Z.
/2

e Taking f(z) = #
A genus A: MSO, — Q. This has the property that it sends spin manifolds to integers.

) and letting the Pontryagin classes be elementary symmetric functions gives the

e Taking

~ sinh(z/2) el qre?)(1 — g"e?)

gives the Witten genus W : M SO, — Q[[g]]. This takes values in Z[[¢]] on spin manifolds. Further-
more, if M is a spin manifold with (p;/2)(TM) = 0, then W[M] is a modular form.



2 Spin manifolds and cobordism theories

Let’s pause to say what is meant by spin manifold. There’s a natural double cover Spin(n) — SO(n) and a
Spin manifold is just an oriented manifold with a lift of its structure group to Spin(n).
Homotopy theory gives us a natural way of describing and generalizing this situation. First, recall that
a real bundle is orientable if and only if its first Stiefel-Whitney class vanishes. This means that there’s a
fiber sequence
BSO — BO 4 K(F,1);

a (stable) bundle is classified by a map to BO, and it lifts to BSO if and only if the composition to K (Fo, 1),
which classifies wy of the bundle, is zero. (I'm working with stable bundles both because the homotopy
theory’s easier and because any flavor of cobordism cares about the stable tangent bundle of a manifold, not
its actual tangent bundle.)

The cohomology of BO is a polynomial ring on the w;, and taking this fiber has killed w;. So BSO is
simply connected, and the next lowest cohomology class is wy € H?(BSO;F3). As it turns out, an oriented
bundle has a spin structure if and only if its wy vanishes. Thus, there’s another fiber sequence

BSpin — BSO %3 K (Fy,2).

The insinuation is that we can define classifying spaces for more highly structured manifolds by just taking
successive connective covers of BO. The lowest cohomology class in H* BSpin is an integral class p;/2 €
K(Z,4). (Note that this isn’t in the image of H*BSO — but two times it is.) We take another fiber
. . p1/2
BString — BSpin = K(Z,4).

BString is now the 7-connected cover of BO — its lowest cohomology class is in H®. Despite the name,
BString is no longer the classifying space of a group. However, we can still use it as a sort of generalized
structure group — define a string manifold to be a spin manifold with p;/2 = 0.

There’s a similar diagram for complex structures, a tower of fibrations BU(6) — BSU — BU.

Now, just as we defined the cobordism rings MU,, M SO,, and MO, there are cobordism rings M Spin,,
MString,, and so on. Homotopy theory lets us do more. Each of these generalized classifying spaces is
associated to an object called a Thom spectrum, which is a highly structured (E) ring spectrum, and
thus defines a multiplicative cohomology theory with power operations. There are maps of F, ring spectra

MString — MSpin — MSO — MO.

What do these cohomology theories do? One point of view is that MG~"(X) is the cobordism classes of
families of G-manifolds over X. You have to do a little work to set this up right, but if X is a manifold, it’s
strictly true: a class in MG~"(X) is a codimension —n G-manifold over X, mod G-cobordism over X.

We can now make a fancier version of our definition.

Definition 2.1. A genus is a map of E., ring spectra from a Thom spectrum to something else.
And now to review the above examples:
e The Todd genus is naturally a map MU — K, into complex K-theory.

e Restricting to Spin manifolds, the A-genus is naturally a map MSpin — KO into real K-theory. This
version of the genus is actually better than the power series version above. The power series version
was M SO, — Q that happened to send MSpin, — Z. Here, the torsion in KO, actually captures
some of the torsion in M Spin,, that would be annihilated by the power series version.

e Restricting to String manifolds, we can write the Witten genus as MString — KO[[g]]. However, this
definition factors through the A genus, and doesn’t explain this modularity property.



3 Complex oriented cohomology theories and formal groups

Definition 3.1. A cohomology theory E is complex oriented if there’s a class # € E?(CP>) that maps
to 1 under the maps
E?*(CP™) — E*(CP') = E°(SY).

Such a class is to be thought of as a universal first Chern class for complex line bundles, valued in E.
Using the splitting principle, one can go on to define a theory of Chern classes for all complex vector bundles,
just as they’re defined for ordinary cohomology. Complex orientability also forces

EX(CP™) = (m. B)|[x]].

Since CP* is a topological abelian group (multiplication representing the tensor product of complex line
bundles), we get a cocommutative cogroup structure on m, E[[z]] — that is, a map of (7. E)-algebras

F :E*(CP™®) — E*(CP™® x CP®) = E*(CP™®) @y.p E*(CP™)

F i(m.) o]) - (Bl o]

This can be identified with a power series F € (7, F)|[[x, y]] satisfying the conditions
F0,z) = F(z,0) =

F(z,y) = F(y,x)
F(F(x,y),2) = F(x, F(y, 2))
F(i(x),z) = 0 for some power series i(x).
Such a structure is called a (commutative, one-dimensional) formal group law. It is equivalent to a group
structure on the formal affine line over m,F. As will be important in a second, you can also get such formal
group laws from algebraic geometry: you get one by completing any smooth, commutative, one-dimensional

group scheme over m, FE at the group identity.
Here are a few basic examples:

1. Ordinary cohomology HZ has a theory of Chern classes already, which corresponds to a complex
orientation. If V and W are complex line bundles, we have

Cl(V X W) = Cl(V) + Cl(W).

Thus we get the formal group law
Fz,y) =z +y,

called the additive formal group law. This is the completion of the scheme AL, with the additive
group structure, at 0. The same holds for ordinary cohomology with coefficients in any ring.

2. Complex K-theory is also complex orientable. Here 7, K = Z[3%!] with § € T K the Bott periodicity
class. The formal group law is
F(z,y) =z +y+ Bay,
called a multiplicative formal group law. If we re-coordinatize by putting 2’ = —3~ 'z, then it has
the form
1-F(a,y) =1 -2)(1-y)
which is the formal completion of the scheme G, at 1.

3. Finally, complex cobordism MU has the universal complex orientation: there’s a first Chern class
¢ € MU?(CP>), and the complex orientations of a ring spectrum F are exactly the images of this
c1 under the maps of ring spectra MU — E. It is a surprising and deep theorem, due to Quillen, that

the formal group law Fy;y over m, MU = Z[aq,as,...] is also the universal formal group law. That
is, formal group laws over a ring R are precisely the base changes of Fj;yy under ring homomorphisms
.MU — R.



4 Elliptic spectra

So there’s a suggestion of a deep connection between formal group laws and stable homotopy theory. The
next step in its exploration is finding cohomology theories that carry other formal group laws, particularly
ones coming from algebraic geometry.

Definition 4.1. An elliptic cohomology theory is the data of: an even periodic, complex orientable
cohomology theory FE, an elliptic curve C' — Ej, and an isomorphism C' — Gg between the formal completion
of C' at the identity and the formal group of F.

I haven’t proved that such things exist, but they do in wide generality: any elliptic curve C' — Spec R
such that the corresponding map from Spec R to the moduli of elliptic curves is flat is part of an elliptic
cohomology theory.

Theorem 4.2. There is a natural map of multiplicative cohomology theories MString, — FE,. for every
elliptic cohomology theory E.

Now, the Witten genus, as described above, is the genus associated to a particular elliptic cohomology
theory E. Namely, we take the Tate curve over Z[[g]] and form an elliptic spectrum K[[g]]. The Witten
genus is naturally a map MString, — K[[g]].. And just as we saw that the A genus was better understood
by lifting to a map to KO, it would be nice to lift the Witten genus further — to build a genus from M String
to some sort of universal elliptic cohomology theory.

5 TMF

Unfortunately, no such thing exists. What we think instead is: elliptic curves are sections of a sheaf over
the moduli stack of elliptic curves. An elliptic cohomology theory, likewise, could be the sections of a sheaf
of elliptic cohomology theories. So we can take the global sections of this sheaf — which is no longer an
elliptic cohomology just because the stack itself has nontrivial cohomology, which, for example, destroys
even periodicity.

This doesn’t quite work either. Part of the problem is that multiplicative cohomology theories themselves
are not a nice enough category, and don’t have a good sheaf theory. We can fix this by further rigidifying
into the category of elliptic E, ring spectra. Briefly, an E., ring spectrum has enough structure to take
homotopy limits, and we can define a sheaf of E, spectra on some site to be a presheaf of E, spectra that
sends covers to homotopy limits. Finally, we can construct a sheaf of E., ring spectra on the moduli of
elliptic curves, and realize the various elliptic genera as maps of E., ring spectra into sections of this sheaf.
The spectrum TMF is the global sections of this sheaf, and the Witten genus in its full glory is a map
MString - TMF.

This program has been carried out by work of Goerss, Hopkins, and Lurie. The Lurie version runs as
follows. A scheme is a functor from rings to sets satisfying a sheaf condition, that’s covered by representable
objects. Likewise, a derived stack is a functor from F., rings to spaces, satisfying this homotopy sheaf
condition, and that’s covered by representable objects. In particular, we can define a derived moduli stack of
derived elliptic curves, as the stack representing the functor that sends an F, ring R to the space of derived
elliptic curves over R. One then has to prove:

1. this functor is representable;
2. it restricts to elliptic spectra on sufficiently small open affine sets.

The second part is where the relationship between elliptic curves and formal groups really takes off.
Localize everything at p; an elliptic curve C has a p-divisible group C[p™], defined as the colimit of the
subschemes of p"-torsion points of C. C[p"] is a finite flat group scheme of rank p?"; in characteristic p, it
can take one of two forms.

1. If C is ordinary, then C[p™"] has p™ different connected components, each of which is a formal group
scheme of order p™. C[p>] is some Galois twist of an extension

0— G, — Cp™] = Q,/Z, — 0.



2. If C is supersingular, then C[p™] has a single connected component, and C[p™] corresponds naturally
to a height 2 formal group.

Theorem 5.1 (Serre-Tate). Deformations of a p-local elliptic curve C are the same as deformations of the
p-divisible group of C.

And we can describe this deformation space completely. If C' is supersingular, then it’s the deformation
space of a formal group. A theorem of Goerss, Hopkins, and Miller says that this deformation space can
canonically be lifted to a derived affine formal scheme, the formal spectrum of an E.. ring spectrum called
Morava FE-theory, E5. If C' is ordinary, then its p-divisible group is an extension of a formal group G,,, by
an étale group. The étale part deforms uniquely, so the deformation space of C[p™] is an extension of the
deformation space of the formal part by the space of extensions. Again, the deformation space of the formal
part corresponds to an E, ring spectrum FE;, and the space of extensions gives us a function spectrum of
the form Hom(CP*>, Ey).

The upshot is that we can describe the local structure of the derived moduli stack in terms of these two
kinds of E-theories. And proving that the moduli of derived elliptic curves is built from elliptic spectra
reduces to looking at its local structure. As a result, the construction of TMF generalizes to give derived
versions of any nice enough stack over the moduli of p-divisible groups. In particular, Behrens and Law-
son have constructed spectra of topological automorphic forms associated to moduli of higher-dimensional
abelian varieties with extra symmetry. These spectra are still pretty poorly understood, and people are
very interested both in understanding them better and in developing other variants of this whole game. Ill
conclude by mentioning a few very open questions.

1. Are there higher analogues of the Witten genus? That is, can we fiber off more of the cohomology
of BO and get a map from the corresponding Thom spectrum to some other ‘chromatic’ spectrum —
maybe a topological automorphic forms spectrum?

2. Instead of seeing elliptic curves as one-dimensional abelian varieties, we could think of them as one-
dimensional Calabi-Yau varieties. Calabi-Yau varieties of dimension n, like K3 surfaces, have formal
groups associated to their n-dimensional étale cohomology. Can we understand higher chromatic
phenomena through moduli of Calabi-Yau varieties? One immediate obstacle is that the deformations
of a K3 surface are not controlled by the deformations of a p-divisible group. However, they bear a
close relation to something that looks like the Dieudonné crystal of a p-divisible group.

3. Is there a moduli of derived p-divisible groups, such that the sheaves giving TMF, TAF, and so on
are pulled back from a sheaf over this derived stack? If so, what are the corresponding global sections?



