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1 Genera

A major goal of algebraic topology has been the classification of manifolds. To classify manifolds, we define
manifold invariants, of which the Reshetikhin-Turaev invariants are one example. I want to focus today on
a di↵erent kind of classification for a di↵erent kind of manifold. Let’s take manifolds with some sort of extra
structure on their tangent bundles, and classify them up to cobordism that preserves that structure. The
set of cobordism classes forms a ring, where

[M ] + [M 0] = [M tM 0]

[M ] · [M 0] = [M ⇥M 0].

One approach to manifold asks: what are these rings? Many of them have been calculated by Milnor, Quillen,
and others. In the unoriented cobordism ring, MO⇤, every manifold is 2-torsion (the cylinder M ⇥ [0, 1] is
a cobordism between M tM and ;), and we have

MO⇤ = F2[{xi : i 6= 2j � 1}].

The complex cobordism ring MU⇤ is torsion-free and satisfies

MU⇤ ⌦Q = Q[{CPn}].

The only torsion in the oriented cobordism ring MSO⇤ is 2-torsion. The rest looks like

MSO⇤ ⌦Q = Q[{CP 2n}].

These theorems were mostly proved by finding cobordism invariants of manifolds. Often, such invariants
can be found in the manifold’s characteristic numbers. Recall that a vector bundle E ! B has characteristic
classes:

• If E is complex, there are Chern classes ci(E) 2 H2i(B;Z).

• If E is real, there are Stiefel-Whitney classes wi(E) 2 Hi(B;F2).

• If E is real and oriented, there are Pontryagin classes pi(E) 2 H4i(B;Z).

For a complex manifold M2n, one can then define Chern numbers as follows. Let I = (is) be a sequence of
natural numbers with

P
sis = n; then the corresponding Chern number is

cI [M ] =
DY

cs(TM)is , [M ]
E
.

Thom proved that

Theorem 1.1. Two complex manifolds are complex cobordant if and only if they have the same Chern

numbers.
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Similar theorems hold for real manifolds and the Stiefel-Whitney numbers, and oriented real manifolds
and the Pontryagin and Stiefel-Whitney numbers.

Now let’s turn to the general problem of finding all the cobordism invariants. Here’s one not on the list
so far: if M is an oriented 4n-manifold, then the cup product on H2n(M ;Z) is a symmetric bilinear form,
and one can prove that its signature �(M) is an invariant of oriented cobordism. By the above, �(M) is
some linear combination of Pontryagin numbers – but what? The answer, discovered by Hirzebruch, is a
little unusual at first. Consider the power series

f(z) =

p
z

tanh
p
z
= 1 +

z

3
� z2

45
+ · · · .

The infinite product
f(z1)f(z2) · · ·

is invariant under permutations of the zi, so it can be written as a power series in the elementary symmetric
polynomials:

f(z1)f(z2) · · · = L(p1, p2, · · · ) = 1 +
p1
3

+
7p2 � p21

45
+ · · ·

where pi is the ith elementary symmetric polynomial in the zi. Write Ln for the degree n component of this
expression. Given an oriented 4n-manifold M , we reinterpret Ln as an expression in terms of the Pontryagin
classes of TM , and define Ln[M ] to be the corresponding Pontryagin number.

Theorem 1.2 (Hirzebruch). We have Ln[M ] = �(M).

For example, take M = CP 2, which clearly has signature 1. Since TM is complex, we can calculate its
Pontryagin classes from its Chern classes:

c(TM) = (1 + x)3 whereH⇤M = Z[x]/(x3), x = c1(O(�1)).

p1(TM) = c1(TM)2 � 2c2(TM) = (3x)2 � 2 · 3x2 = 3x2.

Thus p1[M ]/3 = 1 = �(M).
One very nontrivial consequence of this theorem is integrality results for the Pontryagin numbers: since

the signature is an integer, p1 must always be divisible by 3, 7p2 � p21 by 45, and so on.
Notice also that this sequence (Ln) is multiplicative: writing L =

P
Ln, if we have

X
pi =

⇣X
p0i

⌘⇣X
p00i

⌘
,

then L(pi) = L(p0i)L(p
00
i ). Of course, this formula holds for the Pontryagin classes of a sum of two bundles

– for example, the Pontryagin classes of T (M ⇥ M 0) ⇠= TM � TM 0. As a result, we have defined a ring
homomorphism L : MSO⇤ ! Q.

Definition 1.3. A genus (plural genera) is a ring homomorphism from a cobordism ring to some other
ring.

In other words, a genus is a cobordism invariant for manifolds with whatever structure, that sends disjoint
unions to sums and products to products. The above considerations have shown us how to construct genera
from any power series with constant term 1, at least starting from cobordism rings generated by some kind
of elementary symmetric polynomials, that is, MO⇤, MU⇤, and MSO⇤ ⌦Q. A few other examples:

• Taking f(z) = z
1�e�z and letting the Chern classes be the elementary symmetric polynomials in zi

gives the Todd genus Td : MU⇤ ! Z.

• Taking f(z) = z/2
sinh(z/2) and letting the Pontryagin classes be elementary symmetric functions gives the

Â genus Â : MSO⇤ ! Q. This has the property that it sends spin manifolds to integers.

• Taking

f(z) =
z/2

sinh(z/2)

Y

n�1

(1� qn)2

(1� qnez)(1� qne�z)

gives the Witten genus W : MSO⇤ ! Q[[q]]. This takes values in Z[[q]] on spin manifolds. Further-
more, if M is a spin manifold with (p1/2)(TM) = 0, then W [M ] is a modular form.
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2 Spin manifolds and cobordism theories

Let’s pause to say what is meant by spin manifold. There’s a natural double cover Spin(n) ! SO(n) and a
Spin manifold is just an oriented manifold with a lift of its structure group to Spin(n).

Homotopy theory gives us a natural way of describing and generalizing this situation. First, recall that
a real bundle is orientable if and only if its first Stiefel-Whitney class vanishes. This means that there’s a
fiber sequence

BSO ! BO
w1! K(F2, 1);

a (stable) bundle is classified by a map to BO, and it lifts to BSO if and only if the composition to K(F2, 1),
which classifies w1 of the bundle, is zero. (I’m working with stable bundles both because the homotopy
theory’s easier and because any flavor of cobordism cares about the stable tangent bundle of a manifold, not
its actual tangent bundle.)

The cohomology of BO is a polynomial ring on the wi, and taking this fiber has killed w1. So BSO is
simply connected, and the next lowest cohomology class is w2 2 H2(BSO;F2). As it turns out, an oriented
bundle has a spin structure if and only if its w2 vanishes. Thus, there’s another fiber sequence

BSpin ! BSO
w2! K(F2, 2).

The insinuation is that we can define classifying spaces for more highly structured manifolds by just taking
successive connective covers of BO. The lowest cohomology class in H⇤BSpin is an integral class p1/2 2
K(Z, 4). (Note that this isn’t in the image of H⇤BSO – but two times it is.) We take another fiber

BString ! BSpin
p1/2! K(Z, 4).

BString is now the 7-connected cover of BO – its lowest cohomology class is in H8. Despite the name,
BString is no longer the classifying space of a group. However, we can still use it as a sort of generalized
structure group – define a string manifold to be a spin manifold with p1/2 = 0.

There’s a similar diagram for complex structures, a tower of fibrations BUh6i ! BSU ! BU .
Now, just as we defined the cobordism rings MU⇤, MSO⇤, and MO⇤, there are cobordism rings MSpin⇤,

MString⇤, and so on. Homotopy theory lets us do more. Each of these generalized classifying spaces is
associated to an object called a Thom spectrum, which is a highly structured (E1) ring spectrum, and
thus defines a multiplicative cohomology theory with power operations. There are maps of E1 ring spectra

MString ! MSpin ! MSO ! MO.

What do these cohomology theories do? One point of view is that MG�n(X) is the cobordism classes of
families of G-manifolds over X. You have to do a little work to set this up right, but if X is a manifold, it’s
strictly true: a class in MG�n(X) is a codimension �n G-manifold over X, mod G-cobordism over X.

We can now make a fancier version of our definition.

Definition 2.1. A genus is a map of E1 ring spectra from a Thom spectrum to something else.

And now to review the above examples:

• The Todd genus is naturally a map MU ! K, into complex K-theory.

• Restricting to Spin manifolds, the Â-genus is naturally a map MSpin ! KO into real K-theory. This
version of the genus is actually better than the power series version above. The power series version
was MSO⇤ ! Q that happened to send MSpin⇤ ! Z. Here, the torsion in KO⇤ actually captures
some of the torsion in MSpin⇤, that would be annihilated by the power series version.

• Restricting to String manifolds, we can write the Witten genus as MString ! KO[[q]]. However, this
definition factors through the Â genus, and doesn’t explain this modularity property.
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3 Complex oriented cohomology theories and formal groups

Definition 3.1. A cohomology theory E is complex oriented if there’s a class x 2 E2(CP1) that maps
to 1 under the maps

E2(CP1) ! E2(CP 1) ⇠= E0(S0).

Such a class is to be thought of as a universal first Chern class for complex line bundles, valued in E.
Using the splitting principle, one can go on to define a theory of Chern classes for all complex vector bundles,
just as they’re defined for ordinary cohomology. Complex orientability also forces

E⇤(CP1) ⇠= (⇡⇤E)[[x]].

Since CP1 is a topological abelian group (multiplication representing the tensor product of complex line
bundles), we get a cocommutative cogroup structure on ⇡⇤E[[x]] – that is, a map of (⇡⇤E)-algebras

F :E⇤(CP1) ! E⇤(CP1 ⇥ CP1) ⇠= E⇤(CP1)⌦⇡⇤E E⇤(CP1)

F :(⇡⇤E)[[x]] ! (⇡⇤E)[[x, y]]

This can be identified with a power series F 2 (⇡⇤E)[[x, y]] satisfying the conditions

F (0, x) = F (x, 0) = x

F (x, y) = F (y, x)

F (F (x, y), z) = F (x, F (y, z))

F (i(x), x) = 0 for some power series i(x).

Such a structure is called a (commutative, one-dimensional) formal group law. It is equivalent to a group
structure on the formal a�ne line over ⇡⇤E. As will be important in a second, you can also get such formal
group laws from algebraic geometry: you get one by completing any smooth, commutative, one-dimensional
group scheme over ⇡⇤E at the group identity.

Here are a few basic examples:

1. Ordinary cohomology HZ has a theory of Chern classes already, which corresponds to a complex
orientation. If V and W are complex line bundles, we have

c1(V ⌦W ) = c1(V ) + c1(W ).

Thus we get the formal group law
F (x, y) = x+ y,

called the additive formal group law. This is the completion of the scheme A1
Z, with the additive

group structure, at 0. The same holds for ordinary cohomology with coe�cients in any ring.

2. Complex K-theory is also complex orientable. Here ⇡⇤K = Z[�±1] with � 2 ⇡2K the Bott periodicity
class. The formal group law is

F (x, y) = x+ y + �xy,

called a multiplicative formal group law. If we re-coordinatize by putting x0 = ���1x, then it has
the form

1� F (x0, y0) = (1� x0)(1� y0)

which is the formal completion of the scheme Gm at 1.

3. Finally, complex cobordism MU has the universal complex orientation: there’s a first Chern class
c1 2 MU2(CP1), and the complex orientations of a ring spectrum E are exactly the images of this
c1 under the maps of ring spectra MU ! E. It is a surprising and deep theorem, due to Quillen, that
the formal group law FMU over ⇡⇤MU ⇠= Z[a1, a2, . . . ] is also the universal formal group law. That
is, formal group laws over a ring R are precisely the base changes of FMU under ring homomorphisms
⇡⇤MU ! R.
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4 Elliptic spectra

So there’s a suggestion of a deep connection between formal group laws and stable homotopy theory. The
next step in its exploration is finding cohomology theories that carry other formal group laws, particularly
ones coming from algebraic geometry.

Definition 4.1. An elliptic cohomology theory is the data of: an even periodic, complex orientable
cohomology theory E, an elliptic curve C ! E0, and an isomorphism bC ! GE between the formal completion
of C at the identity and the formal group of E.

I haven’t proved that such things exist, but they do in wide generality: any elliptic curve C ! SpecR
such that the corresponding map from SpecR to the moduli of elliptic curves is flat is part of an elliptic
cohomology theory.

Theorem 4.2. There is a natural map of multiplicative cohomology theories MString⇤ ! E⇤ for every

elliptic cohomology theory E.

Now, the Witten genus, as described above, is the genus associated to a particular elliptic cohomology
theory E. Namely, we take the Tate curve over Z[[q]] and form an elliptic spectrum K[[q]]. The Witten
genus is naturally a map MString⇤ ! K[[q]]⇤. And just as we saw that the Â genus was better understood
by lifting to a map to KO, it would be nice to lift the Witten genus further – to build a genus from MString
to some sort of universal elliptic cohomology theory.

5 TMF

Unfortunately, no such thing exists. What we think instead is: elliptic curves are sections of a sheaf over
the moduli stack of elliptic curves. An elliptic cohomology theory, likewise, could be the sections of a sheaf
of elliptic cohomology theories. So we can take the global sections of this sheaf – which is no longer an
elliptic cohomology just because the stack itself has nontrivial cohomology, which, for example, destroys
even periodicity.

This doesn’t quite work either. Part of the problem is that multiplicative cohomology theories themselves
are not a nice enough category, and don’t have a good sheaf theory. We can fix this by further rigidifying
into the category of elliptic E1 ring spectra. Briefly, an E1 ring spectrum has enough structure to take
homotopy limits, and we can define a sheaf of E1 spectra on some site to be a presheaf of E1 spectra that
sends covers to homotopy limits. Finally, we can construct a sheaf of E1 ring spectra on the moduli of
elliptic curves, and realize the various elliptic genera as maps of E1 ring spectra into sections of this sheaf.
The spectrum TMF is the global sections of this sheaf, and the Witten genus in its full glory is a map
MString ! TMF .

This program has been carried out by work of Goerss, Hopkins, and Lurie. The Lurie version runs as
follows. A scheme is a functor from rings to sets satisfying a sheaf condition, that’s covered by representable
objects. Likewise, a derived stack is a functor from E1 rings to spaces, satisfying this homotopy sheaf
condition, and that’s covered by representable objects. In particular, we can define a derived moduli stack of
derived elliptic curves, as the stack representing the functor that sends an E1 ring R to the space of derived
elliptic curves over R. One then has to prove:

1. this functor is representable;

2. it restricts to elliptic spectra on su�ciently small open a�ne sets.

The second part is where the relationship between elliptic curves and formal groups really takes o↵.
Localize everything at p; an elliptic curve C has a p-divisible group C[p1], defined as the colimit of the
subschemes of pn-torsion points of C. C[pn] is a finite flat group scheme of rank p2n; in characteristic p, it
can take one of two forms.

1. If C is ordinary, then C[pn] has pn di↵erent connected components, each of which is a formal group
scheme of order pn. C[p1] is some Galois twist of an extension

0 ! Gm ! C[p1] ! Qp/Zp ! 0.
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2. If C is supersingular, then C[pn] has a single connected component, and C[p1] corresponds naturally
to a height 2 formal group.

Theorem 5.1 (Serre-Tate). Deformations of a p-local elliptic curve C are the same as deformations of the

p-divisible group of C.

And we can describe this deformation space completely. If C is supersingular, then it’s the deformation
space of a formal group. A theorem of Goerss, Hopkins, and Miller says that this deformation space can
canonically be lifted to a derived a�ne formal scheme, the formal spectrum of an E1 ring spectrum called
Morava E-theory, E2. If C is ordinary, then its p-divisible group is an extension of a formal group Gm by
an étale group. The étale part deforms uniquely, so the deformation space of C[p1] is an extension of the
deformation space of the formal part by the space of extensions. Again, the deformation space of the formal
part corresponds to an E1 ring spectrum E1, and the space of extensions gives us a function spectrum of
the form Hom(CP1, E1).

The upshot is that we can describe the local structure of the derived moduli stack in terms of these two
kinds of E-theories. And proving that the moduli of derived elliptic curves is built from elliptic spectra
reduces to looking at its local structure. As a result, the construction of TMF generalizes to give derived
versions of any nice enough stack over the moduli of p-divisible groups. In particular, Behrens and Law-
son have constructed spectra of topological automorphic forms associated to moduli of higher-dimensional
abelian varieties with extra symmetry. These spectra are still pretty poorly understood, and people are
very interested both in understanding them better and in developing other variants of this whole game. I’ll
conclude by mentioning a few very open questions.

1. Are there higher analogues of the Witten genus? That is, can we fiber o↵ more of the cohomology
of BO and get a map from the corresponding Thom spectrum to some other ‘chromatic’ spectrum –
maybe a topological automorphic forms spectrum?

2. Instead of seeing elliptic curves as one-dimensional abelian varieties, we could think of them as one-
dimensional Calabi-Yau varieties. Calabi-Yau varieties of dimension n, like K3 surfaces, have formal
groups associated to their n-dimensional étale cohomology. Can we understand higher chromatic
phenomena through moduli of Calabi-Yau varieties? One immediate obstacle is that the deformations
of a K3 surface are not controlled by the deformations of a p-divisible group. However, they bear a
close relation to something that looks like the Dieudonné crystal of a p-divisible group.

3. Is there a moduli of derived p-divisible groups, such that the sheaves giving TMF , TAF , and so on
are pulled back from a sheaf over this derived stack? If so, what are the corresponding global sections?
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