1
The roots of science

1.1 The quest for the forces that shape the world

WHAT laws govern our universe? How shall we know them? How
may this knowledge help us to comprehend the world and hence guide
its actions to our advantage?

Since the dawn of humanity, people have been deeply concerned by
questions like these. At first, they had tried to make sense of those
influences that do control the world by referring to the kind of understand-
ing that was available from their own lives. They had imagined that
whatever or whoever it was that controlled their surroundings would do
so as they would themselves strive to control things: originally they had
considered their destiny to be under the influence of beings acting very
much in accordance with their own various familiar human drives. Such
driving forces might be pride, love, ambition, anger, fear, revenge, passion,
retribution, loyalty, or artistry. Accordingly, the course of natural
events—such as sunshine, rain, storms, famine, illness, or pestilence—
was to be understood in terms of the whims of gods or goddesses motiv-
ated by such human urges. And the only action perceived as influencing
these events would be appeasement of the god-figures.

But gradually patterns of a different kind began to establish their reli-
ability. The precision of the Sun’s motion through the sky and its clear
relation to the alternation of day with night provided the most obvious
example; but also the Sun’s positioning in relation to the heavenly orb of
stars was seen to be closely associated with the change and relentless
regularity of the seasons, and with the attendant clear-cut influence on
the weather, and consequently on vegetation and animal behaviour. The
motion of the Moon, also, appeared to be tightly controlled, and its phases
determined by its geometrical relation to the Sun. At those locations on
Earth where open oceans meet land, the tides were noticed to have a
regularity closely governed by the position (and phase) of the Moon.
Eventually, even the much more complicated apparent motions of the
planets began to yield up their secrets, revealing an immense underlying
precision and regularity. If the heavens were indeed controlled by the
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whims of gods, then these gods themselves seemed under the spell of exact
mathematical laws.

Likewise, the laws controlling earthly phenomena—such as the daily
and yearly changes in temperature, the ebb and flow of the oceans, and the
growth of plants—being seen to be influenced by the heavens in this
respect at least, shared the mathematical regularity that appeared to
guide the gods. But this kind of relationship between heavenly bodies
and earthly behaviour would sometimes be exaggerated or misunderstood
and would assume an inappropriate importance, leading to the occult and
mystical connotations of astrology. Tt took many centuries before the
rigour of scientific understanding enabled the true influences of the
heavens to be disentangled from purely suppositional and mystical ones.
Vet it had been clear from the earliest times that such influences did indeed
exist and that, accordingly, the mathematical laws of the heavens must
have relevance also here on Earth.

Seemingly independently of this, there were perceived to be other regu-
larities in the behaviour of earthly objects. One of these was the tendency
for all things in one vicinity to move in the same downward direction,
according to the influence that we now call gravity. Matter was observed
to transform, sometimes, from one form into another, such as with the
melting of ice or the dissolving of salt, but the total quantity of that matter
appeared never to change, which reflects the law that we now refer to as
conservation of mass. In addition, it was noticed that there are many
material bodies with the important property that they retain their shapes,
whence the idea of rigid spatial motion arose; and it became possible to
understand spatial relationships in terms of a precise, well-defined geom-
etry—the 3-dimensional geometry that we now call Fuclidean. Moreover,
the notion of a ‘straight line’ in this geometry turned out to be the same as

that provided by rays of light (or lines of sight). There was a remarkable-

precision and beauty to these ideas, which held a considerable fascination
for the ancients, just as it does for us today.

Yet, with regard to our everyday lives, the implications of this math-
ematical precision for the actions of the world often appeared unexciting
and limited, despite the fact that the mathematics itself seemed to repre-
sent a deep truth. Accordingly, many people in ancient times would allow
their imaginations to be carried away by their fascination with the subject
and to take them far beyond the scope of what was appropriate. In
astrology, for example, geometrical figures also often engendered mystical
and occult connotations, such as with the supposed magical powers of
pentagrams and heptagrams. And there was an entirely suppositional
attempted association between Platonic solids and the basic clementary
states of matter (see Fig. 1.1). It would not be for many centuries that the
deeper understanding that we presently have, concerning the actual
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Fig. 1..1 A. fanciful association, made by the ancient Greeks, between the five
Platonic solids and the four ‘clements’ (fire, air, watér, and earth), together with
the heavenly firmament represented by the dodecahedron.

relationships between mass, gravity, geomet i
_ _ : , ry, planetary motion, and the
behaviour of light, could come about. 7

1.2 Mathematical truth

tI‘he first steps towards an understanding of the real influences controll-
ing Nature required a disentangling of the true from the purely suppos-
itional. But the ancients needed to achieve something else first, before
they would be in any position to do this reliably for their understax,lding of
Nature. What they had to do first was to discover how to disentangle the
true from the suppositional in mathematics. A procedure was required for
telling w}}ether a given mathematical assertion is or is not to be trusted as
true, Until .that preliminary issue could be settled in a reasonable way, there
would b_e little hope of seriously addressing those more difficult pro,blems
concerning forces that control the behaviour of the world and whatever
their relations might be to mathematical truth. This realization that the key
to the understanding of Nature lay within an unassailable mathematics was
perhaps the first major breakthrough in science.

_ Although mathematical truths of various kinds had been surmised
since ancient Egyptian and Babylonian times, it was not until the
great Greek philosophers Thales of Miletus (c.625-547 BC) and
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Pythagoras!” of Samos (c.572-497 BC) began to introduce the notion of
mathematical proof that the first firm foundation stone of mathematical
understanding—and therefore of science itself—was laid. Thales may have
been the first to introduce this notion of proof, but it seems to have been the
Pythagoreans who first made important use of it to establish things that
were not otherwise obvious. Pythagoras also appeared to have a strong
vision of the importance of number, and of arithmetical concepts, in
governing the actions of the physical world. It is said that a big factor in
this realization was his noticing that the most beautiful harmonies produced
by lyres or flutes corresponded to the simplest fractional ratios between
the lengths of vibrating strings or pipes. He is said to have introduced the
‘Pythagorean scale’, the numerical ratios of what we now know to be
frequencies determining the principal intervals on which Western music is
essentially based.? The famous Pythagorean theorem, asserting that the
square on the hypotenuse of a right-angled triangle is equal to the sum of
the squares on the other two sides, perhaps more than anythingelse, showed
that indeed there is a precise relationship between the arithmetic of numbers
and the geometry of physical space (see Chapter 2).

He had a considerable band of followers—the Pythagoreans——situated
in the city of Croton, in what is now southern Italy, but their influence on
the outside world was hindered by the fact that the members of the
Pythagorean brotherhood were alt sworn to secrecy. Accordingly, almost
all of their detailed conclusions have been lost. Nonetheless, some of these
conclusions were leaked out, with unfortunate consequences for the
‘moles’—on at least one occasion, death by drowning!

In the long run, the influence of the Pythagoreans on the progress of
human thought has been enormous. For the first time, with mathematical
proof, it was possible to make significant assertions of an unassailable
nature, so that they would hold just as true even today as at the time that
they were made, no matter how our knowledge of the world has pro-
gressed since then. The truly timeless nature of mathematics was beginning
to be revealed.

But what is a mathematical proof? A proof, in mathematics, is an
impeccable argument, using only the methods of pure logical reasoning,
which enables one to infer the validity of a given mathematical assertion
from the pre-established validity of other mathematical assertions, ot from
some particular primitive assertions—the axioms—whose validity is taken
to be self-evident. Once such a mathematical assertion has been estab-
lished in this way, it is referred to as a theorem.

Many of the theorems that the Pythagoreans were concerned with were
geometrical in nature; others were assertions simply about numbers. Those

*Notes, indicated in the text by superscript numbers, are gathered at the ends of the chapter
(in this case on p. 23).
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that were concerned merely with numbers have a peifectly unambiguous
validity today, just as they did in the time of Pythagoras. What about the
geometrical theorems that the Pythagoreans had obtained using their
procedures of mathematical proof? They too have a clear validity today
but now there is a complicating issue. It is an issue whose nature is moré
obvious to us from our modern vantage point than it was at that time of
Pythagoras. The ancients knew of only one kind of geometry, namely that
which we now refer to as Euclidean geometry, but now we know of many
other types. Thus, in considering the geometrical theorems of ancient
Greek times, it becomes important to specify that the notion of geometry
being referred to is indeed Euclid’s geometry. (I shall be more explicit
about these issues in §2.4, where an important example of non-Euclidean
geometry will be given.)

El_lclidean geometry is a specific mathematical structure, with its own
specific axioms (including some less assured assertions referred to as postu-
lates), which provided an excellent approximation to a particular aspect of
the physical world. That was the aspect of reality, well familiar to the ancient
Greeks, which referred to the laws governing the geometry of rigid objects
ar_ld the.ir relations to other rigid objects, as they are moved around in 3-
dimensional space. Certain of these properties were so familiar and self-
consistent that they tended to become regarded as ‘self-evident’ mathemat-
ical truths and were taken as axioms (or postulates). As we shall be seeing in
C}:'Lapters 17-19 and §§27.8,11, Einstein’s general relativity-——and even the
Minkowskian spacetime of special relativity—provide geometries for
the physical universe that are different from, and yet more accurate than
the geometry of Euclid, despite the fact that the Euclidean geometry of thé
ancients was already extraordinarily accurate. Thus, we must be careful
w}.len considering geometrical assertions, whether to trust the ‘axioms’ a;
being, in any sense, actually true.

But what does ‘true’ mean, in this context? The difficulty was well
appreciated by the great ancient Greek philosopher Plato, who lived in
Athens from ¢.429 to 347 Bc, about a century and a half after Pythagoras.
Plato made it clear that the mathematical propositions—the things that
COlllld be regarded as unassailably true—referred not to actual physical
objects (like the approximate squares, triangles, circles, spheres, and cubes
that might be constructed from marks in the sand, or from wood or stone)
but tc? certain idealized entities. He envisaged that these ideal entities
1n!1ab1ted a different world, distinct from the physical world. Today, we
mlgh_t refer to this world as the Platonic world of mathematical fo;ms.
Physical structures, such as squares, circles, or triangles cut from papyrus
or marked on a flat surface, or perhaps cubes, tetrahedra, or sphere;
carved _from marble, might conform to these ideals very closely, but only
approximately. The actual mathematical squares, cubes, circles, spheres,
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triangles, etc., would not be part of the physical world, but would be
inhabitants of Plato’s idealized mathematical world of forms.

1.3 Is Plato’s mathematical world ‘real’?

This was an extraordinary idea for its time, and it has turned out to bea
very powerful one. But does the Platonic mathematical world actually
exist, in any meaningful sense? Many people, including philosophers,
might regard such a ‘world’ as a complete fiction —a product merely of
our unrestrained imaginations. Yet the Platonic viewpoint is indeed an
immensely valuable one. It tells us to be careful to distinguish the precise
mathematical entities from the approximations that we see around us n
the world of physical things. Moreover, it provides us with the blueprint
according to which modern science has proceeded ever since. Scientists will
put forward models of the world—or, rather, of certain aspects of the
world—and these models may be tested against previous observation and
against the results of carefully designed experiment. The models are
deemed to be appropriate if they survive such rigorous examination and
if, in addition, they are internally consistent structures. The important
point about these models, for our present discussion, is that they are
basically purely abstract mathematical models. The very question of the
internal consistency of a scientific model, in particular, is one that requires
that the model be precisely specified. The required precision demands that
the model be a mathematical one, for otherwise one cannot be sure that
these questions have well-defined answers.

If the model itself is to be assigned any kind of ‘existence’, then this
existence is located within the Platonic world of mathematical forms. Of
course, one might take a contrary viewpoint: namely that the model is
itself to have existence only within our various minds, rather than to take
Plato’s world to be in any sense absolute and ‘real’. Yet, there is something
important to be gained in regarding mathematical structures as having a
reality of their own. For our individual minds are notoriously imprecise,
unreliable, and inconsistent in their judgements. The precision, reliability,
and consistency that are required by our scientific theories demand some-
thing beyond any one of our individual (untrustworthy) minds. In math-
ematics, we find a far greater robustness than can be located in any
particular mind. Does this not point to something outside ourselves,
with a reality that lies beyond what each individual can achieve?

Nevertheless, one might still take the alternative view that the math-
ematical world has no independent existence, and consists merely of
certain ideas which have been distilled from our various minds and
which have been found to be totally trustworthy and are agreed by all.
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Yet even this viewpoint seems to leave us far short of what is required. Do
we mean ‘agreed by all’, for example, or ‘agreed by those who are in their
right minds’, or ‘agreed by all those who have a Ph.D. in mathematics’
(not much use in Plato’s day) and who have a right to venture an ‘authori-
tative’ opinion? There seems to be a danger of circularity here; for to judge
whether or not someone is ‘in his or her right mind’ requires some external
standard. So also does the meaning of ‘authoritative’, unless some stand-
ard of an unscientific nature such as ‘majority opinion’ were to be adopted
(and it should be made clear that majority opinion, no matter how
important it may be for democratic government, should in no way be
used as the criterion for scientific acceptability). Mathematics itself indeed
seems to have a robustness that goes far beyond what any individual
mathematician is capable of perceiving. Those who work in this subject,
whether they are actively engaged in mathematical research or just using
results that have been obtained by others, usually feel that they are merely
explorers in a world that lies far beyond themselves—a world which
possesses an objectivity that transcends mere opinion, be that opinion
their own or the surmise of others, no matter how expert those others
might be.

It may be helpful if I put the case for the actual existence of the Platonic
world in a different form. What I mean by this ‘existence’ is really just the
objectivity of mathematical truth. Platonic existence, as I see it, refers to
the existence of an objective external standard that is not dependent upon
our individual opinions nor upon our particular culture. Such ‘existence’
could also refer to things other than mathematics, such as to morality or
aesthetics (cf. §1.5), but I am here concerned jusi with mathematical
objectivity, which seems to be a much clearer issue.

Let me illustrate this issue by considering one famous example of a
m.athematical truth, and relate it to the question of ‘objectivity’. In 1637,
Pierre de Fermat made his famous assertion now known as ‘Fermat’s Last
Theorem’ (that no positive nth power® of an integer, i.e. of a whole
number, can be the sum of two other positive nth powers if # is an integer
greater than 2), which he wrote down in the margin of his copy of the
Afithmefica, a book written by the 3rd-century Greek mathematician
Diophantos. In this margin, Fermat also noted: ‘I have discovered a
truly marvellous proof of this, which this margin is too narrow to contain.’
Fermat’s mathematical assertion remained unconfirmed for over 350
years, despite concerted efforts by numerous outstanding mathematicians.
A pFoof was finally published in 1995 by Andrew Wiles (depending on the
earlier work of various other mathematicians), and this proof has now
been accepted as a valid argument by the mathematical community.

Now, do we take the view that Fermat’s assertion was always true, long
before Fermat actually made it, or is its validity a purely cultural matter,
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dependent upon whatever might be the subjective standards of the com-
munity of human mathematicians? Let us try Lo suppose that the validity
of the Fermat assertion is in fact a subjective matter. Then it would not be
an absurdity for some other mathematician X to have come up with an
actual and specific counter-example to the Fermat assertion, so long as X
had done this before the date of 1995.4 In such a circumstance, the
mathematical community would have to accept the correctness of X’s
counter-example. From then on, any effort on the part of Wiles to prove
the Fermat assertion would have to be fruitless, for the reason that X had
got his argument in first and, as a result, the Fermat assertion would now
be false! Morecover, we could ask the further question as to whether,
consequent upon the correctness of X’s forthcoming counter-example,
Fermat himself would necessarily have been mistaken in believing in the
soundness of his ‘truly marvelious proof’, at the time that he wrote his
marginal note. On the subjective view of mathematical truth, it could
possibly have been the case that Fermat had a valid proof (which would
have been accepted as such by his peers at the time, had he revealed it} and
that it was Fermat’s secretiveness that allowed the possibility of X later
obtaining a counter-example! I think that virtually alt mathematicians,
irrespective of their professed attitudes to ‘Platonism’, would regard such
possibilities as patently absurd.

Of course, it might still be the case that Wiles’s argument in fact
contains an error and that the Fermat assertion is indeed false. Or there
could be a fundamental error in Wiles’s argument but the Fermat assertion
is true nevertheless. Or it might be that Wiles’s argument is correct in its
essentials while containing ‘non-rigorous steps’ that would not be up to the
standard of some future rules of mathematical acceptability. But these
issues do not address the point that T am getting at here. The issue is the
objectivity of the Fermat assertion itself, not whether anyone’s particular
demonstration of it (or of its negation) might happen to be convincing to
the mathematical community of any particular time.

Tt should perhaps be mentioned that, from the point of view of math-
ematical logic, the Fermat assertion is actually a mathematical statement
of a particularly simple kind,” whose objectivity is especially apparent.
Only a tiny minority® of mathematicians would regard the truth of such
assertions as being in any way ‘subjective’—although there might be some
subjectivity about the types of argument that would be regarded as being
convincing. However, there are other kinds of mathematical assertion
whose truth could plausibly be regarded as being a ‘matter of opinion’.
Perhaps the best known of such assertions is the axiom of choice. 1t is not
important for us, now, to know what the axiom of choice is. (I shall
describe it in §16.3.) It is cited here only as an example. Most mathemat-
icians would probably regard the axiom of choice as ‘obviously true’, while
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others may regard it as a somewhat questionable assertion which might
even be false (and I am myself inclined, to some extent, towards this
second viewpoint). Still others would take it as an assertion whose
‘truth’ is a mere matter of opinion or, rather, as something which can be
taken one way or the other, depending upon which system of axioms and
rules of procedure (a ‘formal system’; see §16.6) one chooses to adhere to.
Mathematicians who support this final viewpoint (but who accept the
objectivity of the truth of particularly clear-cut mathematical statements,
like the Fermat assertion discussed above) would be relatively weak Pla-
tonists. Those who adhere to objectivity with regard to the truth of the
axiom of choice would be stronger Platonists.

I shall come back to the axiom of choice in §16.3, since it has some
relevance to the mathematics underlying the behaviour of the physical
world, despite the fact that it is not addressed much in physicai theory. For
the moment, it will be appropriate not to worry overly about this issue. If
the axiom of choice can be settled one way or the other by some appropri-
ate form of unassailable mathematical reasoning,’ then its truth is indeed
an entirely objective matter, and either it belongs to the Platonic world or
its negation does, in the sense that I am interpreting this term ‘Platonic
world’. If the axiom of choice is, on the other hand, a mere matter of
opinion or of arbitrary decision, then the Platonic world of absolute
mathematical forms contains neither the axiom of choice nor its negation
(although it could contain assertions of the form ‘such-and-such follows
from the axiom of choice’ or ‘the axiom of choice is a theorem according
to the rules of such-and-such mathematical system’).

The mathematical assertions that can belong to Plato’s world are pre-
cisely those that are objectively true. Indeed, I would regard mathematical
objectivity as really what mathematical Platonism is all about. To say that
some mathematical assertion has a Platonic existence is merely to say that
it is true in an objective sense. A similar comment applies to mathematical
notions—such as the concept of the number 7, for example, or the rule of
multiplication of integers, or the idea that some set contains infinitely
many _e]ements—all of which have a Platonic existence because they are
objective notions. To my way of thinking, Platonic existence is simply a
matter of objectivity and, accordingly, should certainly not be viewed as
something “mystical’ or ‘unscientific’, despite the fact that some people
regard it that way.

A; with the axiom of choice, however, questions as to whether some
partixcular proposal for a mathematical entity is or is not to be regarded as
hgvmg objective existence can be delicate and sometimes technical. Des-
pite this, we certainly nced not be mathematicians to appreciate the
gengral robustness of many mathematical concepts. In Fig. 1.2, I have
depicted various small portions of that famous mathematical entity known
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%S 2t :
Fig. 1.2 (a) The Mandelbrot set. (b), (c), and (d) Some details, illustrating blow-

ups of those regions correspondingly marked in Fig. 1.2a, magnified by respective
linear factors 11.6, 168.9, and 1042 (and caps 300, 300, 200, 200; see Note 4.1).

as the Mandelbrot set. The set has an extraordinarily elaborate structure,
but it is not of any human design. Remarkably, this structure is defined by
a mathematical rule of particular simplicity. We shall come to this expli-
citly in §4.5, but it would distract us from our present purposes if I were to
iry to provide this rule in detail now.

The point that I wish to make is that no one, not even Benoit Mandel-
brot himself when he first caught sight of the incredible complications in
the fine details of the set, had any real preconception of the set’s extraor-
dinary richness. The Mandelbrot set was certainly no invention of any
human mind. The set is just objectively there in the mathematics itself. If it
has meaning to assign an actual existence to the Mandelbrot set, then that
existence is not within our minds, for no one can fully comprehend the set’s
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endless variety and unlimited complication. Nor can its existence lie within
the multitude of computer printouts that begin to capture some of its
incredible sophistication and detail, for at best those printouts capture
but a shadow of an approximation to the set itself. Yet it has a robusiness
that is beyond any doubt; for the same structure is revealed—in all its
perceivable details, to greater and greater fineness the more closely it is
examined—independently of the mathematician or computer that examines
it. Its existence can only be within the Platonic world of mathematical
forms.

I am aware that there will still be many readers who find difficulty with
assigning any kind of actual existence to mathematical structures. Let me
make the request of such readers that they merely broaden their notion of
what the term ‘existence’ can mean to them. The mathematical forms of
Plato’s world clearly do not have the same kind of existence as do ordinary
physical objects such as tables and chairs. They do not have spatial
locations; nor do they exist in time. Objective mathematical notions
must be thought of as timeless entities and are not to be regarded as
being_ conjured into existence at the moment that they are first humanly
perceived. The particular swirls of the Mandelbrot set that are depicted
in Fig. 1.2c or 1.2d did not attain their existence at the moment that they
were first seen on a computer screen or printout. Nor did they come about
when the general idea behind the Mandelbrot set was first humanly put
forth-—not actually first by Mandelbrot, as it happened, but by R. Brooks
and J. P. Matelski, in 1981, or perhaps earlier. For certainly neither
Brooks nor Matelski, nor initially even Mandelbrot himself, had any
real conception of the elaborate detailed designs that we see in Fig. 1.2¢
a'nd 1:2d. Those designs were already ‘in existence’ since the beginning of
time, in the potential timeless sense that they would necessarily be revealed
pregsely in the form that we perceive them today, no matter at what time
:)1: in what location some perceiving being might have chosen to.examine

em.

1.4 Three worlds and three deep mysteries

Thus, mathematical existence is different not only from physical existence
but al§o from an existence that is assigned by our mental perceptions. Yet
there is a de:ep and mysterious connection with each of those other two
forms of existence: the physical and the mental. In Fig. 1.3, I have
schematically indicated all of these three forms of existence—the ,physical
the ment.:al, and the Platonic mathematical-—as entities belonging to threé
separate ‘worlds’, drawn schematically as spheres. The mysterious connec-
tions between the worlds are also indicated, where in drawing the diagram
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Platonic
mathematical
world

Fig. 1.3 Threc ‘worlds'—
the Platonic mathematical,
the physical, and the
. mental—and the three
Physical profound mysteries in the
world connections between them.

I have imposed upon the reader some of my beliefs, or prejudices, con-
cerning these mysteries.

It may be noted, with regard to the first of these mysteries—relating the
Platonic mathematical world to the physical world—that I am allowing
that only a small part of the world of mathematics need have relevance to
the workings of the physical world. It is certainly the case that the vast
preponderance of the activities of pure mathematicians today has no
obvious connection with physics, nor with any other science (cf. §34.9),
although we may be frequently surprised by unexpected important appli-
cations. Likewise, in relation to the second mystery, whereby mentality
comes about in association with certain physical structures (most specifi-
cally, healthy, wakeful human brains), I am not insisting that the majority
of physical structures need induce mentality. While the brain of a cat may
indeed evoke mental qualities, I am not requiring the same for a rock.
Finally, for the third mystery, I regard it as self-evident that only a small
fraction of our mental activity need be concerned with absolute mathemat-
jcal truth! (More likely we are concerned with the multifarious irritations,
pleasures, worries, excitements, and the like, that fill our daily lives.} These
three facts are represented in the smallness of the base of the conmnection of
each world with the next, the worlds being taken in a clockwise sense in the
diagram. However, it is in the encompassing of each entire world within
the scope of its connection with the world preceding it that I am revealing
my prejudices.

Thus, according to Fig. 1.3, the entire physical world is depicted as
being governed according to mathematical laws. We shall be seeing in later
chapters that there is powerful (but incomplete) evidence in support of this
contention. On this view, everything in the physical universe 15 indeed
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governed in completely precise detail by mathematical principles—
perhaps by equations, such as those we shall be learning about in chapters
to follow, or perhaps by some future mathematical notions fundamen-
tally different from those which we would today label by the term ‘equa-
tions’. If this is right, then even our own physical actions would be entirely
subject to such ultimate mathematical control, where ‘control’ might still
allow for some random behaviour governed by strict probabilistic
principles.

Many people feel uncomfortable with contentions of this kind, and T
must confess to having some unease with it myself. Nonetheless, my
personal prejudices are indeed to favour a viewpoint of this general nature,
since it is hard to see how any line can be drawn to separate physical
actions under mathematical control from those which might lie beyond it.
Tn my own view, the unease that many readers may share with me on this
issue partly arises from a very limited notion of what ‘mathematical
control’ might entail. Part of the purpose of this book is to touch upon,
and to reveal to the reader, some of the extraordinary richness, power, and
beauty that can spring forth once the right mathematical notions are hit
upon.

In the Mandelbrot set alone, as illustrated in Fig. 1.2, we can begin to

catch a glimpse of the scope and beauty inherent in such things. But even
these structures inhabit a very limited corner of mathematics as a whole,
where behaviour is governed by strict computational control. Beyond this
corner is an incredible potential richness. How do I really feel about the
possibility that all my actions, and those of my friends, are ultimately
governed by mathematical principles of this kind? I can live with that. I
?vould, indeed, prefer to have these actions controlled by something resid-
ing in some such aspect of Plato’s fabulous mathematical world than to
have them be subject to the kind of simplistic base motives, such as
pleasure-secking, personal greed, or aggressive violence, that many
would argue to be the implications of a strictly scientific standpoint.
. Yet, I can well imagine that a good many readers will still have difficulty
in accepting that all actions in the universe could be entirely subject to
math.ematical laws. Likewise, many might object to two other prejudices
of mine that are implicit in Fig, 1.3. They might feel, for example, that I
am taking too hard-boiled a scientific attitude by drawing my diagram in a
way that implies that all of mentality has its roots in physicality. This is
mc‘leed a prejudice, for while it is true that we have no reasonable scientific
evidence for the existence of ‘minds’ that do not have a physical basis, we
cannot be completely sure. Moreover, many of a religious persuasion
would argue strongly for the possibility of physically independent minds
@d might appeal to what they regard as powerful evidence of a different
kind from that which is revealed by ordinary science.
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A further prejudice of mine is reflected in the fact that in Fig. 1.3 I have
represented the entire Platonic world to be within the compass of mental-
ity. This is intended to indicate that—at least in principle—there are no
mathematical truths that are beyond the scope of reason. Of course, there
are mathematical statements (even straightforward arithmetical addition
sums) that are so vastly complicated that no one could have the mental
fortitude to carry out the necessary reasoning. However, such things
would be potentially within the scope of (human) mentality and would
be consistent with the meaning of Fig. 1.3 as I have intended to represent
it. One must, nevertheless, consider that there might be other mathemat-
ical statements that lic outside even the potential compass of reason, and
these would violate the intention behind Fig. 1.3. (This matter will be
considered at greater length in §16.6, where its relation to Gédel’s famous
incompleteness theorem will be discussed.)®

In Fig. 1.4, as a concession to those who do not share all my personal
prejudices on these matters, 1 have redrawn the connections between the
three worlds in order to allow for all three of these possible violations of
my prejudices. Accordingly, the possibility of physical action beyond the
scope of mathematical control is now taken into account. The diagram
also allows for the belief that there might be mentality that is not rooted in
physical structures. Finally, it permits the existence of true mathematical
assertions whose truth is in principle inaccessible to reason and insight.

This extended picture presents further potential mysteries that lie even
beyond those which [ have allowed for in my own preferred picture of the
world, as depicted in Fig. 1.3. In my opinion, the more tightly organized
scientific viewpoint of Fig. 1.3 has mysteries enough. These mysteries are
not removed by passing to the more relaxed scheme of Fig. 1.4. For it

Platonic
mathematical
world

A physicat  Fig- 14 A redrawing of

W world Fig. 1.3 in which violations
of three of the prejudices of
the author are allowed for.

20

The roots of science $1.4

remains a deep puzzle why mathematical laws should apply to the world
with such phenomenal precision. (We shall be glimpsing something of the
extraordinary accuracy of the basic physical theories in §19.8, §26.7,
and §27.13.) Moreover, it is not just the precision but also the subtle
sophistication and mathematical beauty of these successful theories that
is profoundly mysterious. There is also an undoubted deep mystery in how
it can come to pass that appropriately organized physical material—and
here I refer specifically to living human (or animai) brains—can somehow
conjure up the mental quality of conscious awareness. Finally, there is also
a mystery about how it is that we perceive mathematical truth. It is not just
that our brains are programmed to ‘calculate’ in reliable ways. There is
something much more profound than that in the insights that even the
humblest among us possess when we appreciate, for example, the actual
meanings of the terms ‘zero’, ‘one’, ‘two’, ‘three’, ‘four’, ete.?

Some of the issues that arise in connection with this third mystery will be
our concern in the next chapter (and more explicitly in §§16.5,6) in relation
to the notion of mathematical proof. But the main thrust of this book has
to do with the first of these mysteries: the remarkable relationship between
mathematics and the actual behaviour of the physical world. No proper
appreciation of the extraordinary power of modern science can be
achieved without at least some acquaintance with these mathematical
ideas. No doubt, many readers may find themselves daunted by the
prospect of having to come to terms with such mathematics in order to
arrive at this appreciation. Yet, I have the optimistic belief that they may
not find all these things to be so bad as they fear, Moreover, I hope that I
may persuade many readers that, despite what she or he may have previ-
ously perceived, mathematics can be fun!

I shall not be especially concerned here with the second of the mysteries
depicted in Figs. 1.3 and 1.4, namely the issue of how it is that mentality—
most particularly conscious awareness—can come about in association with
apprqpriate physical structures (although T shall touch upon this deep
question in §34.7). There will be enough to keep us busy in exploring the
physical universe and its associated mathematical laws. In addition, the
issues concerning mentality are profoundly contentious, and it would dis-
tract from the purpose of this book if we were to get embroiled in them.
Perhapg one comment will not be amiss here, however. This is that, in my
own opinion, there is little chance that any deep understanding of the nature
of the @nd can come about without our first learning much more about the
very basis of physical reality. As will become clear from the discussions that
will !:)e p_resented in later chapters, I believe that major revolutions are
rcqmreq in our physical understanding. Until these revolutions have come
to pass, it is, in my view, greatly optimistic to expect that much real progress
can be made in understanding the actual nature of mental processes.'®
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1.5 The Good, the True, and the Beautiful

In relation to this, there is a further set of issues raised by Figs. 1.3 and 1.4.
I have taken Plato’s notion of a ‘world of ideal forms® only in the limited
sense of mathematical forms. Mathematics is crucially concerned with the
particular ideal of Truth. Plato himself would have insisted that there are
two other fundamental absolute ideals, namely that of the Beautiful and of
the Good. 1 am not at all averse to admitting to the existence of such ideals,
and to allowing the Platonic world to be extended so as to contain
absolutes of this nature.

Indeed, we shall later be encountering some of the remarkable interrela-
tions between truth and beauty that both illuminate and confuse the issues
of the discovery and acceptance of physical theories (see §834.2,5,9 par-
ticularly; see also Fig. 34.1). Moreover, quite apart from the undoubted
(though often ambiguous) role of beauty for the mathematics underlying
the workings of the physical world, aesthetic criteria are fundamental to
the development of mathematical ideas for their own sake, providing
both the drive towards discovery and a powerful guide to truth. T would
even surmise that an important element in the mathematician’s common
conviction that an external Platonic world actually has an existence inde-
pendent of ourselves comes from the extraordinary unexpected hidden
beauty that the ideas themselves so frequently reveal.

Of less obvious relevance here—but of clear importance in the broader
context—is the question of an absolute ideal of morality: what is good and
what is bad, and how do our minds perceive these values? Morality has a
profound connection with the mental world, since it is 80 intimately related
to the values assigned by conscious beings and, more importantly, to the

very presence of consciousness itself. It is hard to sec what morality might.

mean in the absence of sentient beings. As science and technology progress,
an understanding of the physical circumstances under which mentality is
manifested becomes more and more relevant. 1 believe that it is more
important than ever, in today’s technological culture, that scientific ques-
tions should not be divorced from their moral implications. But these issues
would take us too far afield from the immediate scope of this book. Weneed
to address the question of separating true from false before we can ad-
equately attempt to apply such understanding to separate good from bad.
There is, finally, a further mystery concerning Fig. 1.3, which T have left
to the last. I have deliberately drawn the figure so as to illustrate a
paradox. How can it be that, in accordance with my own prejudices,
each world appears to encompass the next one in its entirety? I do not
regard this issue as a reason for abandoning my prejudices, but merely for
demonstrating the presence of an cven deeper mystery that transcends
those which 1 have been pointing to above. There may be a sense in
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which the three worlds are not separate at all, but merely reflect, individu-
ally, aspects gf a deeper truth about the world as a whole of whic,h we have
little conception at the present time. We have a long way to go before such
matters can be properly illuminated.

I have allowed myself to siray too much from the issues that will
coTncern us _here. The main purpose of this chapter has been to emphasize
the central importance that mathematics has in science, both ancient and
modgrn. Let us now take a glimpse into Plato’s world—at least into a
relatively small but important part of that world, of particular relevance to
the nature of physical reality.

Nofes

Section 1.2
1.1. Unfortunately, almost nothing reliable is known about Pythagoras, his life, his
followers, or of their work, apart from their very existence and the rescognitioil b
Pythagoras of the role of simple ratios in musical harmony. See Burkert (1972)Y
Yet ml%ch of great importance is commonly attributed to the Pythagorean‘s'
Ac?ord:tngly, I shall use the term ‘Pythagorean’ simply as a label, with no im lil
cation intended as to historical accuracy. ’ o
1.2. This is the pure ‘diatonic scale’ in which the frequencies (in inverse proportion to
t}zle'lengths 0[: the vibrating elements) are in the ratios 24 :27:30:32:36:40:45: 48
giving many instances of simple ratios, which underlie harmonies that are p.)lea:sin ,
to the ear. The ‘white notes’ of a modern piano are tuned {according to g
compromise between Pythagorean purity of harmony and the facility of ke
changes) as approximations to these Pythagorean ratios, according to the e aji‘
temperament scale, with relative frequencies lie?:a*: o a’:o®:all:ol? wgzre
= ¥2=1.05946.... (Note: & means the fifth power -of ,ot ie
@ x axeaxoxe The quantity ¥2 is the twelfth root of 2, which is the m,lmb-e-
whose twelfth power is 2, i.e. 2V/12, 5o that o' = 2. See Note 1.3 and §5.2.) '
Section 1.3 . ;

1.3. il:;cl?ll tt'fom N']?}Ee 1.2 that_the nth power of a number is that number multiplied by
e j: Sllrfn‘e; ittegsé ‘}hi t8h11,r(: tzf)wer of 5is 125, written 5° = 125; the fourth power
In t."act, while Wiles was trying to fix a ‘gap’ in his proof of Fermat’s Last Theorem
;vghlch had become apparent after his initial presentation at Cambridge in June
icizi’ ;.I ;aulllc;llfc _sprﬁag through the mathematical community that the mathemat-
el ies had found a counter-example to Fermat’s assertion. Earlier, in
1988, Elkies l.md found a counter-example to Euler’s conjecture—that there are n
integer solutions to the equation x* +y* 4 2* = w'—thereby proving it false 12
was not implausible, therefore, that he had proved that Fermat’s assertion a-1
was false. However, the e-mail that started the rumour was dated 1 April and w:;
2 ¥veal§d to l?e a spoof perpetrated by Henri Darmon; see Singh (1997), p. 293.
1.5. ! echqlcally it is a T1;-sentence; see §16.6.
0. asl;:?ﬂze that, in a sense, I am falling into my own trap by making such an
on. The issue is not really whether the mathematicians taking such an

1.4,
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L.7.

cxireme subjective view happen to constitute 2 tiny minority or not (and I have
certainly not conducted a trustworthy survey among mathematicians on this
point); the issue is whether such an extreme position is actually to be taken
seriously. I leave it to the reader to judge.

Some readers may be aware of the results of Gadel and Coben that the axiom of
choice is independent of the more basic standard axioms of set theory (the
Zermelo—Frankel axiom system). It should be made clear that the Godel-
Cohen argument does not in itself establish that the axiom of choice will never
be settled one way or the other. This kind of point is stressed, for example, in the
final section of Paul Cohen’s book (Cohen 1966, Chap. 14, §13), except that,
there, Cohen is more explicitly concerned with the continuum hypothesis than the

axiom of choice; see §16.5.

Section 1.4

1.8.

1.9.
1.10.
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There is perhaps an irony here that a fully fledged anti-Platonist, who believes
that mathematics is ‘all in the mind’ must also believe—so it seems—that there
are no true mathematical statements that are in principle beyond reason. For
example, if Fermat’s Last Theorem had been inaccessible (in principle) to reason,
then this anti-Platonist view would allow no validity either to its truth or to its
falsity, such validity coming only through the mental act of perceiving some
proof or disproof.

See e.g. Penrose (1997b).

My own views on the kind of change in our physical world-view that will be
needed in order that conscious mentality may be accommodated are expressed in

Penrose (1989, 1994, 1997a,1997b).

r

2
An ancient theorem and a modern question

2.1 The Pythagorean theorem

LeT us consider the issue of geometry. What, indeed, are the different
‘kinds of geometry’ that were alluded to in the last chapter? To lead up to
this issue, we shall return to our encounter with Pythagoras and consider
that famous theorem that bears his name:! for any right-angled triangle
the square of the length of the hypotenuse (the side opposite the righé
angle) is equal to the sum of the squares of the lengths of the other two
sides (Fig. 2.1). What reasons do we have for believing that this assertion is
true? How, indeed, do we ‘prove’ the Pythagorean theorem? Many argu-
ments are known. I wish to consider two such, chosen for their particular
transparency, each of which has a different emphasis.

Eor the first, consider the pattern illustrated in Fig. 2.2. It is composed
ent1rel¥ of squares of two different sizes. It may be regarded as ‘obvious’
that this pattern can be continued indefinitely and that the entire plane is
thereby covered in this regular repeating way, without gaps or overlaps, by
squares of these two sizes. The repeating nature of this pattern is m’ade
manifest by the fact that if we mark the centres of the larger squares, they
form t_he vertices of another system of squares, of a somewhat greate,r size
than e1t1'1€r, but tilted at an angle to the original ones (Fig. 2.3) and which
alone will cover the entire plane. Each of these tilted squares is marked in
exactly the same way, so that the markings on these squares fit together to

p Fig. 2.1 The Pythagorean
theorem: for any right-angled
triangle, the squared length of the
hypotenuse ¢ is the sum of the
a squared lengths of the other two

2= sides « and b.
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