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ON PROOF AND PROGRESS IN MATHEMATICS

WILLIAM P. THURSTON

This essay on the nature of proof and progress in mathematics was stimu-

lated by the article of Jaffe and Quinn, "Theoretical Mathematics: Toward a

cultural synthesis of mathematics and theoretical physics". Their article raises
interesting issues that mathematicians should pay more attention to, but it also

perpetuates some widely held beliefs and attitudes that need to be questioned

and examined.

The article had one paragraph portraying some of my work in a way that

diverges from my experience, and it also diverges from the observations of

people in the field whom I've discussed it with as a reality check.

After some reflection, it seemed to me that what Jaffe and Quinn wrote was an

example of the phenomenon that people see what they are tuned to see. Their

portrayal of my work resulted from projecting the sociology of mathematics

onto a one-dimensional scale (speculation versus rigor) that ignores many basic

phenomena.

Responses to the Jaffe-Quinn article have been invited from a number of

mathematicians, and I expect it to receive plenty of specific analysis and crit-

icism from others. Therefore, I will concentrate in this essay on the positive

rather than on the contranegative. I will describe my view of the process of

mathematics, referring only occasionally to Jaffe and Quinn by way of compar-

ison.

In attempting to peel back layers of assumptions, it is important to try to
begin with the right questions:

1. What is it that mathematicians accomplish?

There are many issues buried in this question, which I have tried to phrase

in a way that does not presuppose the nature of the answer.

It would not be good to start, for example, with the question

How do mathematicians prove theorems?

This question introduces an interesting topic, but to start with it would be to

project two hidden assumptions:

(1) that there is uniform, objective and firmly established theory and practice

of mathematical proof, and

(2) that progress made by mathematicians consists of proving theorems.

It is worthwhile to examine these hypotheses, rather than to accept them as

obvious and proceed from there.
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The question is not even

How do mathematicians make progress in mathematics?

Rather, as a more explicit (and leading) form of the question, I prefer

How do mathematicians advance human understanding of math-

ematics?

This question brings to the fore something that is fundamental and pervasive:

that what we are doing is finding ways for people to understand and think about

mathematics.

The rapid advance of computers has helped dramatize this point, because

computers and people are very different. For instance, when Appel and Haken

completed a proof of the 4-color map theorem using a massive automatic com-

putation, it evoked much controversy. I interpret the controversy as having little

to do with doubt people had as to the veracity of the theorem or the correctness

of the proof. Rather, it reflected a continuing desire for human understanding
of a proof, in addition to knowledge that the theorem is true.

On a more everyday level, it is common for people first starting to grapple

with computers to make large-scale computations of things they might have

done on a smaller scale by hand. They might print out a table of the first 10,000

primes, only to find that their printout isn't something they really wanted after

all. They discover by this kind of experience that what they really want is usually

not some collection of "answers"—what they want is understanding.

It may sound almost circular to say that what mathematicians are accom-

plishing is to advance human understanding of mathematics. I will not try to

resolve this by discussing what mathematics is, because it would take us far

afield. Mathematicians generally feel that they know what mathematics is, but

find it difficult to give a good direct definition. It is interesting to try. For me,

"the theory of formal patterns" has come the closest, but to discuss this would

be a whole essay in itself.

Could the difficulty in giving a good direct definition of mathematics be an

essential one, indicating that mathematics has an essential recursive quality?

Along these lines we might say that mathematics is the smallest subject satisfying
the following:

• Mathematics includes the natural numbers and plane and solid geometry.

• Mathematics is that which mathematicians study.

• Mathematicians are those humans who advance human understanding of
mathematics.

In other words, as mathematics advances, we incorporate it into our thinking.

As our thinking becomes more sophisticated, we generate new mathematical

concepts and new mathematical structures: the subject matter of mathematics
changes to reflect how we think.

If what we are doing is constructing better ways of thinking, then psycho-

logical and social dimensions are essential to a good model for mathematical

progress. These dimensions are absent from the popular model. In caricature,
the popular model holds that
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D. mathematicians start from a few basic mathematical structures and a

collection of axioms "given" about these structures, that

T. there are various important questions to be answered about these struc-

tures that can be stated as formal mathematical propositions, and

P. the task of the mathematician is to seek a deductive pathway from the

axioms to the propositions or to their denials.

We might call this the definition-theorem-proof (DTP) model of mathematics.

A clear difficulty with the DTP model is that it doesn't explain the source of

the questions. Jaffe and Quinn discuss speculation (which they inappropriately

label "theoretical mathematics") as an important additional ingredient. Specu-

lation consists of making conjectures, raising questions, and making intelligent

guesses and heuristic arguments about what is probably true.

Jaffe and Quinn's DSTP model still fails to address some basic issues. We

are not trying to meet some abstract production quota of definitions, theorems

and proofs. The measure of our success is whether what we do enables people

to understand and think more clearly and effectively about mathematics.

Therefore, we need to ask ourselves:

2.  HOW DO PEOPLE UNDERSTAND MATHEMATICS?

This is a very hard question. Understanding is an individual and internal

matter that is hard to be fully aware of, hard to understand and often hard to

communicate. We can only touch on it lightly here.

People have very different ways of understanding particular pieces of math-

ematics. To illustrate this, it is best to take an example that practicing mathe-

maticians understand in multiple ways, but that we see our students struggling

with. The derivative of a function fits well. The derivative can be thought of

as:

( 1 ) Infinitesimal: the ratio of the infinitesimal change in the value of a func-

tion to the infinitesimal change in a function.

(2) Symbolic: the derivative of x" is nxn~x , the derivative of sin(x) is

cos(x), the derivative of /o g is f'°g*g', etc.

(3) Logical: f'(x) = d if and only if for every e there is a ô such that
when 0 < |Ax| < ô,

f(x + Ax) - f(x)     d <s
Ax

(4) Geometric: the derivative is the slope of a line tangent to the graph of
the function, if the graph has a tangent.

(5) Rate: the instantaneous speed of f{t), when t is time.

(6) Approximation: The derivative of a function is the best linear approxi-

mation to the function near a point.

(7) Microscopic: The derivative of a function is the limit of what you get by

looking at it under a microscope of higher and higher power.

This is a list of different ways of thinking about or conceiving of 'the derivative,

rather than a list of different logical definitions. Unless great efforts are made
to maintain the tone and flavor of the original human insights, the differences
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start to evaporate as soon as the mental concepts are translated into precise,

formal and explicit definitions.

I can remember absorbing each of these concepts as something new and in-

teresting, and spending a good deal of mental time and effort digesting and

practicing with each, reconciling it with the others. I also remember coming

back to revisit these different concepts later with added meaning and under-

standing.

The list continues; there is no reason for it ever to stop. A sample entry

further down the list may help illustrate this. We may think we know all there

is to say about a certain subject, but new insights are around the corner. Fur-

thermore, one person's clear mental image is another person's intimidation:

37. The derivative of a real-valued function / in a domain D is the La-

grangian section of the cotangent bundle T*(D) that gives the connec-

tion form for the unique flat connection on the trivial R-bundle ßxR

for which the graph of / is parallel.

These differences are not just a curiosity. Human thinking and understanding

do not work on a single track, like a computer with a single central processing

unit. Our brains and minds seem to be organized into a variety of separate,

powerful facilities. These facilities work together loosely, "talking" to each

other at high levels rather than at low levels of organization.

Here are some major divisions that are important for mathematical thinking:

( 1 ) Human language. We have powerful special-purpose facilities for speak-

ing and understanding human language, which also tie in to reading and

writing. Our linguistic facility is an important tool for thinking, not just

for communication. A crude example is the quadratic formula which

people may remember as a little chant, "ex equals minus bee plus or mi-

nus the square root of bee squared minus four ay see all over two ay." The

mathematical language of symbols is closely tied to our human language

facility. The fragment of mathematical symbolese available to most cal-

culus students has only one verb, "=". That's why students use it when

they're in need of a verb. Almost anyone who has taught calculus in the

U.S. has seen students instinctively write "x3 = 3x2" and the like.

(2) Vision, spatial sense, kinesthetic (motion) sense. People have very pow-

erful facilities for taking in information visually or kinesthetically, and

thinking with their spatial sense. On the other hand, they do not have a

very good built-in facility for inverse vision, that is, turning an internal

spatial understanding back into a two-dimensional image. Consequently,

mathematicians usually have fewer and poorer figures in their papers and
books than in their heads.

An interesting phenomenon in spatial thinking is that scale makes a

big difference. We can think about little objects in our hands, or we can

think of bigger human-sized structures that we scan, or we can think of

spatial structures that encompass us and that we move around in. We

tend to think more effectively with spatial imagery on a larger scale: it's

as if our brains take larger things more seriously and can devote more
resources to them.

(3) Logic and deduction.   We have some built-in ways of reasoning and
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putting things together associated with how we make logical deductions:

cause and effect (related to implication), contradiction or negation, etc.

Mathematicians apparently don't generally rely on the formal rules of

deduction as they are thinking. Rather, they hold a fair bit of logical

structure of a proof in their heads, breaking proofs into intermediate re-

sults so that they don't have to hold too much logic at once. In fact, it is

common for excellent mathematicians not even to know the standard for-

mal usage of quantifiers (for all and there exists), yet all mathematicians

certainly perform the reasoning that they encode.

It's interesting that although "or", "and" and "implies" have identical

formal usage, we think of "or" and "and" as conjunctions and "implies"

as a verb.

(4) Intuition, association, metaphor. People have amazing facilities for sens-

ing something without knowing where it comes from (intuition); for sens-

ing that some phenomenon or situation or object is like something else

(association); and for building and testing connections and comparisons,

holding two things in mind at the same time (metaphor). These facili-

ties are quite important for mathematics. Personally, I put a lot of effort

into "listening" to my intuitions and associations, and building them into

metaphors and connections. This involves a kind of simultaneous quiet-

ing and focusing of my mind. Words, logic, and detailed pictures rattling

around can inhibit intuitions and associations.

(5) Stimulus-response. This is often emphasized in schools; for instance, if

you see 3927 x 253, you write one number above the other and draw

a line underneath, etc. This is also important for research mathematics:

seeing a diagram of a knot, I might write down a presentation for the

fundamental group of its complement by a procedure that is similar in

feel to the multiplication algorithm.

(6) Process and time. We have a facility for thinking about processes or se-

quences of actions that can often be used to good effect in mathematical

reasoning. One way to think of a function is as an action, a process, that

takes the domain to the range. This is particularly valuable when com-

posing functions. Another use of this facility is in remembering proofs:

people often remember a proof as a process consisting of several steps. In

topology, the notion of a homotopy is most often thought of as a process

taking time. Mathematically, time is no different from one more spatial

dimension, but since humans interact with it in a quite different way, it
is psychologically very different.

3.  HOW IS MATHEMATICAL UNDERSTANDING COMMUNICATED?

The transfer of understanding from one person to another is not automatic. It

is hard and tricky. Therefore, to analyze human understanding of mathematics,

it is important to consider who understands what, and when.

Mathematicians have developed habits of communication that are often dys-

functional. Organizers of colloquium talks everywhere exhort speakers to ex-

plain things in elementary terms. Nonetheless, most of the audience at an

average colloquium talk gets little of value from it. Perhaps they are lost within

the first 5 minutes, yet sit silently through the remaining 55 minutes. Or per-

haps they quickly lose interest because the speaker plunges into technical details
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without presenting any reason to investigate them. At the end of the talk, the

few mathematicians who are close to the field of the speaker ask a question or
two to avoid embarrassment.

This pattern is similar to what often holds in classrooms, where we go through

the motions of saying for the record what we think the students "ought" to learn,

while the students are trying to grapple with the more fundamental issues of

learning our language and guessing at our mental models. Books compensate

by giving samples of how to solve every type of homework problem. Professors

compensate by giving homework and tests that are much easier than the material

"covered" in the course, and then grading the homework and tests on a scale that

requires little understanding. We assume that the problem is with the students

rather than with communication: that the students either just don't have what
it takes, or else just don't care.

Outsiders are amazed at this phenomenon, but within the mathematical com-

munity, we dismiss it with shrugs.

Much of the difficulty has to do with the language and culture of mathemat-

ics, which is divided into subfields. Basic concepts used every day within one

subfield are often foreign to another subfield. Mathematicians give up on trying

to understand the basic concepts even from neighboring subfields, unless they

were clued in as graduate students.

In contrast, communication works very well within the subfields of mathe-

matics. Within a subfield, people develop a body of common knowledge and

known techniques. By informal contact, people learn to understand and copy

each other's ways of thinking, so that ideas can be explained clearly and easily.

Mathematical knowledge can be transmitted amazingly fast within a subfield.

When a significant theorem is proved, it often (but not always) happens that

the solution can be communicated in a matter of minutes from one person

to another within the subfield. The same proof would be communicated and

generally understood in an hour talk to members of the subfield. It would be

the subject of a 15- or 20-page paper, which could be read and understood in a

few hours or perhaps days by members of the subfield.

Why is there such a big expansion from the informal discussion to the talk to

the paper? One-on-one, people use wide channels of communication that go far

beyond formal mathematical language. They use gestures, they draw pictures

and diagrams, they make sound effects and use body language. Communication

is more likely to be two-way, so that people can concentrate on what needs the

most attention. With these channels of communication, they are in a much

better position to convey what's going on, not just in their logical and linguistic
facilities, but in their other mental facilities as well.

In talks, people are more inhibited and more formal. Mathematical audiences

are often not very good at asking the questions that are on most people's minds,

and speakers often have an unrealistic preset outline that inhibits them from
addressing questions even when they are asked.

In papers, people are still more formal. Writers translate their ideas into
symbols and logic, and readers try to translate back.

Why is there such a discrepancy between communication within a subfield

and communication outside of subfields, not to mention communication outside
mathematics?
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Mathematics in some sense has a common language: a language of symbols,

technical definitions, computations, and logic. This language efficiently con-
veys some, but not all, modes of mathematical thinking. Mathematicians learn

to translate certain things almost unconsciously from one mental mode to the

other, so that some statements quickly become clear. Different mathematicians

study papers in different ways, but when I read a mathematical paper in a field

in which I'm conversant, I concentrate on the thoughts that are between the

lines. I might look over several paragraphs or strings of equations and think

to myself "Oh yeah, they're putting in enough rigamarole to carry such-and-

such idea." When the idea is clear, the formal setup is usually unnecessary and

redundant—I often feel that I could write it out myself more easily than figur-

ing out what the authors actually wrote. It's like a new toaster that comes with

a 16-page manual. If you already understand toasters and if the toaster looks

like previous toasters you've encountered, you might just plug it in and see if it

works, rather than first reading all the details in the manual.

People familiar with ways of doing things in a subfield recognize various pat-

terns of statements or formulas as idioms or circumlocution for certain concepts

or mental images. But to people not already familiar with what's going on the

same patterns are not very illuminating; they are often even misleading. The

language is not alive except to those who use it.

I'd like to make an important remark here: there are some mathematicians

who are conversant with the ways of thinking in more than one subfield, some-

times in quite a number of subfields. Some mathematicians learn the jargon

of several subfields as graduate students, some people are just quick at picking

up foreign mathematical language and culture, and some people are in math-

ematical centers where they are exposed to many subfields. People who are

comfortable in more than one subfield can often have a very positive influence,

serving as bridges, and helping different groups of mathematicians learn from

each other. But people knowledgeable in multiple fields can also have a negative

effect, by intimidating others, and by helping to validate and maintain the whole

system of generally poor communication. For example, one effect often takes

place during colloquium talks, where one or two widely knowledgeable people

sitting in the front row may serve as the speaker's mental guide to the audience.

There is another effect caused by the big differences between how we think

about mathematics and how we write it. A group of mathematicians interacting

with each other can keep a collection of mathematical ideas alive for a period of

years, even though the recorded version of their mathematical work differs from

their actual thinking, having much greater emphasis on language, symbols, logic

and formalism. But as new batches of mathematicians learn about the subject

they tend to interpret what they read and hear more literally, so that the more

easily recorded and communicated formalism and machinery tend to gradually
take over from other modes of thinking.

There are two counters to this trend, so that mathematics does not become

entirely mired down in formalism. First, younger generations of mathemati-

cians are continually discovering and rediscovering insights on their own, thus
reinjecting diverse modes of human thought into mathematics.
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Second, mathematicians sometimes invent names and hit on unifying defini-

tions that replace technical circumlocutions and give good handles for insights.

Names like "group" to replace "a system of substitutions satisfying ... ", and

"manifold" to replace

We can't give coordinates to parametrize all the solutions to

our equations simultaneously, but in the neighborhood of any

particular solution we can introduce coordinates

(/l("l , "2 , "3) » f¿{Ul , «2 , "3) > /3(«1 , "2 , "3) , Á(Ul , "2 , "3) »

fs(Ui, U2, M3))

where at least one of the ten determinants

.. .[ten 3x3 determinants of matrices of partial derivatives]...

is not zero

may or may not have represented advances in insight among experts, but they

greatly facilitate the communication of insights.

We mathematicians need to put far greater effort into communicating math-

ematical ideas. To accomplish this, we need to pay much more attention to

communicating not just our definitions, theorems, and proofs, but also our

ways of thinking. We need to appreciate the value of different ways of thinking

about the same mathematical structure.

We need to focus far more energy on understanding and explaining the ba-

sic mental infrastructure of mathematics—with consequently less energy on the

most recent results. This entails developing mathematical language that is ef-

fective for the radical purpose of conveying ideas to people who don't already

know them.

Part of this communication is through proofs.

4. What is a proof?

When I started as a graduate student at Berkeley, I had trouble imagining

how I could "prove" a new and interesting mathematical theorem. I didn't

really understand what a "proof was.

By going to seminars, reading papers, and talking to other graduate students,

I gradually began to catch on. Within any field, there are certain theorems and

certain techniques that are generally known and generally accepted. When you

write a paper, you refer to these without proof. You look at other papers in the

field, and you see what facts they quote without proof, and what they cite in

their bibliography. You learn from other people some idea of the proofs. Then

you're free to quote the same theorem and cite the same citations. You don't

necessarily have to read the full papers or books that are in your bibliography.

Many of the things that are generally known are things for which there may be

no known written source. As long as people in the field are comfortable that
the idea works, it doesn't need to have a formal written source.



ON PROOF AND PROGRESS IN MATHEMATICS 169

At first I was highly suspicious of this process. I would doubt whether a cer-

tain idea was really established. But I found that I could ask people, and they

could produce explanations and proofs, or else refer me to other people or to

written sources that would give explanations and proofs. There were published

theorems that were generally known to be false, or where the proofs were gener-

ally known to be incomplete. Mathematical knowledge and understanding were

embedded in the minds and in the social fabric of the community of people

thinking about a particular topic. This knowledge was supported by written

documents, but the written documents were not really primary.
I think this pattern varies quite a bit from field to field. I was interested in

geometric areas of mathematics, where it is often pretty hard to have a document
that reflects well the way people actually think. In more algebraic or symbolic

fields, this is not necessarily so, and I have the impression that in some areas

documents are much closer to carrying the life of the field. But in any field,

there is a strong social standard of validity and truth. Andrew Wiles's proof

of Fermat's Last Theorem is a good illustration of this, in a field which is very

algebraic. The experts quickly came to believe that his proof was basically

correct on the basis of high-level ideas, long before details could be checked.

This proof will receive a great deal of scrutiny and checking compared to most

mathematical proofs; but no matter how the process of verification plays out,

it helps illustrate how mathematics evolves by rather organic psychological and

social processes.

When people are doing mathematics, the flow of ideas and the social standard

of validity is much more reliable than formal documents. People are usually

not very good in checking formal correctness of proofs, but they are quite good

at detecting potential weaknesses or flaws in proofs.

To avoid misinterpretation, I'd like to emphasize two things I am not saying.

First, I am not advocating any weakening of our community standard of proof;

I am trying to describe how the process really works. Careful proofs that will

stand up to scrutiny are very important. I think the process of proof on the whole

works pretty well in the mathematical community. The kind of change I would

advocate is that mathematicians take more care with their proofs, making them

really clear and as simple as possible so that if any weakness is present it will be

easy to detect. Second, I am not criticizing the mathematical study of formal

proofs, nor am I criticizing people who put energy into making mathematical

arguments more explicit and more formal. These are both useful activities that
shed new insights on mathematics.

I have spent a fair amount of effort during periods of my career exploring

mathematical questions by computer. In view of that experience, I was aston-

ished to see the statement of Jaffe and Quinn that mathematics is extremely slow

and arduous, and that it is arguably the most disciplined of all human activi-

ties. The standard of correctness and completeness necessary to get a computer

program to work at all is a couple of orders of magnitude higher than the math-

ematical community's standard of valid proofs. Nonetheless, large computer

programs, even when they have been very carefully written and very carefully
tested, always seem to have bugs.
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I think that mathematics is one of the most intellectually gratifying of human

activities. Because we have a high standard for clear and convincing thinking

and because we place a high value on listening to and trying to understand

each other, we don't engage in interminable arguments and endless redoing of

our mathematics. We are prepared to be convinced by others. Intellectually,

mathematics moves very quickly. Entire mathematical landscapes change and

change again in amazing ways during a single career.

When one considers how hard it is to write a computer program even ap-

proaching the intellectual scope of a good mathematical paper, and how much

greater time and effort have to be put into it to make it "almost" formally cor-

rect, it is preposterous to claim that mathematics as we practice it is anywhere

near formally correct.

Mathematics as we practice it is much more formally complete and precise

than other sciences, but it is much less formally complete and precise for its

content than computer programs. The difference has to do not just with the

amount of effort: the kind of effort is qualitatively different. In large computer

programs, a tremendous proportion of effort must be spent on myriad compat-

ibility issues: making sure that all definitions are consistent, developing "good"

data structures that have useful but not cumbersome generality, deciding on

the "right" generality for functions, etc. The proportion of energy spent on the

working part of a large program, as distinguished from the bookkeeping part, is

surprisingly small. Because of compatibility issues that almost inevitably esca-

late out of hand because the "right" definitions change as generality and func-

tionality are added, computer programs usually need to be rewritten frequently,
often from scratch.

A very similar kind of effort would have to go into mathematics to make it

formally correct and complete. It is not that formal correctness is prohibitively

difficult on a small scale—it's that there are many possible choices of formaliza-

tion on small scales that translate to huge numbers of interdependent choices in

the large. It is quite hard to make these choices compatible; to do so would cer-

tainly entail going back and rewriting from scratch all old mathematical papers

whose results we depend on. It is also quite hard to come up with good techni-

cal choices for formal definitions that will be valid in the variety of ways that

mathematicians want to use them and that will anticipate future extensions of

mathematics. If we were to continue to cooperate, much of our time would be

spent with international standards commissions to establish uniform definitions
and resolve huge controversies.

Mathematicians can and do fill in gaps, correct errors, and supply more detail

and more careful scholarship when they are called on or motivated to do so. Our

system is quite good at producing reliable theorems that can be solidly backed

up. It's just that the reliability does not primarily come from mathematicians
formally checking formal arguments; it comes from mathematicians thinking

carefully and critically about mathematical ideas.

On the most fundamental level, the foundations of mathematics are much

shakier than the mathematics that we do. Most mathematicians adhere to foun-

dational principles that are known to be polite fictions. For example, it is a

theorem that there does not exist any way to ever actually construct or even de-
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fine a well-ordering of the real numbers. There is considerable evidence (but no

proof) that we can get away with these polite fictions without being caught out,

but that doesn't make them right. Set theorists construct many alternate and

mutually contradictory "mathematical universes" such that if one is consistent,

the others are too. This leaves very little confidence that one or the other is the

right choice or the natural choice. Gödel's incompleteness theorem implies that

there can be no formal system that is consistent, yet powerful enough to serve

as a basis for all of the mathematics that we do.

In contrast to humans, computers are good at performing formal processes.

There are people working hard on the project of actually formalizing parts of

mathematics by computer, with actual formally correct formal deductions. I

think this is a very big but very worthwhile project, and I am confident that

we will learn a lot from it. The process will help simplify and clarify mathe-

matics. In not too many years, I expect that we will have interactive computer

programs that can help people compile significant chunks of formally complete

and correct mathematics (based on a few perhaps shaky but at least explicit

assumptions), and that they will become part of the standard mathematician's

working environment.

However, we should recognize that the humanly understandable and humanly

checkable proofs that we actually do are what is most important to us, and that

they are quite different from formal proofs. For the present, formal proofs are

out of reach and mostly irrelevant: we have good human processes for checking

mathematical validity.

5. What motivates people to do mathematics?

There is a real joy in doing mathematics, in learning ways of thinking that

explain and organize and simplify. One can feel this joy discovering new mathe-

matics, rediscovering old mathematics, learning a way of thinking from a person

or text, or finding a new way to explain or to view an old mathematical structure.

This inner motivation might lead us to think that we do mathematics solely

for its own sake. That's not true: the social setting is extremely important. We

are inspired by other people, we seek appreciation by other people, and we like

to help other people solve their mathematical problems. What we enjoy changes

in response to other people. Social interaction occurs through face-to-face meet-

ings. It also occurs through written and electronic correspondence, preprints,

and journal articles. One effect of this highly social system of mathematics is

the tendency of mathematicians to follow fads. For the purpose of producing

new mathematical theorems this is probably not very efficient: we'd seem to be

better off having mathematicians cover the intellectual field much more evenly.

But most mathematicians don't like to be lonely, and they have trouble staying

excited about a subject, even if they are personally making progress, unless they

have colleagues who share their excitement.

In addition to our inner motivation and our informal social motivation for

doing mathematics, we are driven by considerations of economics and status.

Mathematicians, like other academics, do a lot of judging and being judged.

Starting with grades, and continuing through letters of recommendation, hiring

decisions, promotion decisions, referees reports, invitations to speak, prizes,...
we are involved in many ratings, in a fiercely competitive system.
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Jaffe and Quinn analyze the motivation to do mathematics in terms of a

common currency that many mathematicians believe in: credit for theorems.

I think that our strong communal emphasis on theorem-credits has a nega-

tive effect on mathematical progress. If what we are accomplishing is advancing

human understanding of mathematics, then we would be much better off rec-

ognizing and valuing a far broader range of activity. The people who see the

way to proving theorems are doing it in the context of a mathematical com-

munity; they are not doing it on their own. They depend on understanding of

mathematics that they glean from other mathematicians. Once a theorem has

been proven, the mathematical community depends on the social network to

distribute the ideas to people who might use them further—the print medium

is far too obscure and cumbersome.

Even if one takes the narrow view that what we are producing is theorems,

the team is important. Soccer can serve as a metaphor. There might only be

one or two goals during a soccer game, made by one or two persons. That does

not mean that the efforts of all the others are wasted. We do not judge players

on a soccer team only by whether they personally make a goal; we judge the

team by its function as a team.
In mathematics, it often happens that a group of mathematicians advances

with a certain collection of ideas. There are theorems in the path of these ad-

vances that will almost inevitably be proven by one person or another. Some-

times the group of mathematicians can even anticipate what these theorems are

likely to be. It is much harder to predict who will actually prove the theorem,

although there are usually a few "point people" who are more likely to score.

However, they are in a position to prove those theorems because of the collective

efforts of the team. The team has a further function, in absorbing and making

use of the theorems once they are proven. Even if one person could prove all

the theorems in the path single-handedly, they are wasted if nobody else learns

them.
There is an interesting phenomenon concerning the "point" people. It reg-

ularly happens that someone who was in the middle of a pack proves a the-

orem that receives wide recognition as being significant. Their status in the

community—their pecking order—rises immediately and dramatically. When

this happens, they usually become much more productive as a center of ideas

and a source of theorems. Why? First, there is a large increase in self-esteem,

and an accompanying increase in productivity. Second, when their status in-

creases, people are more in the center of the network of ideas—others take

them more seriously. Finally and perhaps most importantly, a mathematical

breakthrough usually represents a new way of thinking, and effective ways of

thinking can usually be applied in more than one situation.

This phenomenon convinces me that the entire mathematical community

would become much more productive if we open our eyes to the real values

in what we are doing. Jaffe and Quinn propose a system of recognized roles

divided into "speculation" and "proving". Such a division only perpetuates

the myth that our progress is measured in units of standard theorems deduced.

This is a bit like the fallacy of the person who makes a printout of the first

10,000 primes. What we are producing is human understanding. We have

many different ways to understand and many different processes that contribute
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to our understanding. We will be more satisfied, more productive and happier

if we recognize and focus on this.

6. Some personal experiences

Since this essay grew out of reflection on the misfit between my experiences

and the description of Jaffe and Quinn's, I will discuss two personal experiences,

including the one they alluded to.
I feel some awkwardness in this, because I do have regrets about aspects of

my career: if I were to do things over again with the benefit of my present

insights about myself and about the process of mathematics, there is a lot that I

would hope to do differently. I hope that by describing these experiences rather
openly as I remember and understand them, I can help others understand the

process better and learn in advance.

First I will discuss briefly the theory of foliations, which was my first subject,

starting when I was a graduate student. (It doesn't matter here whether you

know what foliations are.)

At that time, foliations had become a big center of attention among geomet-

ric topologists, dynamical systems people, and differential geometers. I fairly
rapidly proved some dramatic theorems. I proved a classification theorem for

foliations, giving a necessary and sufficient condition for a manifold to admit a

foliation. I proved a number of other significant theorems. I wrote respectable

papers and published at least the most important theorems. It was hard to find

the time to write to keep up with what I could prove, and I built up a backlog.

An interesting phenomenon occurred. Within a couple of years, a dramatic

evacuation of the field started to take place. I heard from a number of mathe-

maticians that they were giving or receiving advice not to go into foliations—

they were saying that Thurston was cleaning it out. People told me (not as a

complaint, but as a compliment) that I was killing the field. Graduate students

stopped studying foliations, and fairly soon, I turned to other interests as well.

I do not think that the evacuation occurred because the territory was intel-

lectually exhausted—there were (and still are) many interesting questions that

remain and that are probably approachable. Since those years, there have been

interesting developments carried out by the few people who stayed in the field

or who entered the field, and there have also been important developments in

neighboring areas that I think would have been much accelerated had mathe-

maticians continued to pursue foliation theory vigorously.

Today, I think there are few mathematicians who understand anything ap-

proaching the state of the art of foliations as it lived at that time, although

there are some parts of the theory of foliations, including developments since
that time, that are still thriving.

I believe that two ecological effects were much more important in putting

a damper on the subject than any exhaustion of intellectual resources that oc-
curred.

First, the results I proved (as well as some important results of other people)

were documented in a conventional, formidable mathematician's style. They de-

pended heavily on readers who shared certain background and certain insights.

The theory of foliations was a young, opportunistic subfield, and the background
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was not standardized. I did not hesitate to draw on any of the mathematics I had

learned from others. The papers I wrote did not (and could not) spend much

time explaining the background culture. They documented top-level reasoning

and conclusions that I often had achieved after much reflection and effort. I

also threw out prize cryptic tidbits of insight, such as "the Godbillon-Vey in-

variant measures the helical wobble of a foliation", that remained mysterious to

most mathematicans who read them. This created a high entry barrier: I think

many graduate students and mathematicians were discouraged that it was hard

to learn and understand the proofs of key theorems.

Second is the issue of what is in it for other people in the subfield. When

I started working on foliations, I had the conception that what people wanted

was to know the answers. I thought that what they sought was a collection of

powerful proven theorems that might be applied to answer further mathematical

questions. But that's only one part of the story. More than the knowledge,

people want personal understanding. And in our credit-driven system, they also

want and need theorem-credits.

I'll skip ahead a few years, to the subject that Jaffe and Quinn alluded to,

when I began studying 3-dimensional manifolds and their relationship to hy-

perbolic geometry. (Again, it matters little if you know what this is about.)

I gradually built up over a number of years a certain intuition for hyperbolic

three-manifolds, with a repertoire of constructions, examples and proofs. (This

process actually started when I was an undergraduate, and was strongly bolstered

by applications to foliations.) After a while, I conjectured or speculated that

all three-manifolds have a certain geometric structure; this conjecture eventu-

ally became known as the geometrization conjecture. About two or three years

later, I proved the geometrization theorem for Haken manifolds. It was a hard

theorem, and I spent a tremendous amount of effort thinking about it. When I

completed the proof, I spent a lot more effort checking the proof, searching for

difficulties and testing it against independent information.

I'd like to spell out more what I mean when I say I proved this theorem.

It meant that I had a clear and complete flow of ideas, including details, that

withstood a great deal of scrutiny by myself and by others. Mathematicians have

many different styles of thought. My style is not one of making broad sweeping

but careless generalities, which are merely hints or inspirations: I make clear

mental models, and I think things through. My proofs have turned out to be

quite reliable. I have not had trouble backing up claims or producing details

for things I have proven. I am good in detecting flaws in my own reasoning as

well as in the reasoning of others.

However, there is sometimes a huge expansion factor in translating from the

encoding in my own thinking to something that can be conveyed to someone else.

My mathematical education was rather independent and idiosyncratic, where

for a number of years I learned things on my own, developing personal mental

models for how to think about mathematics. This has often been a big advantage

for me in thinking about mathematics, because it's easy to pick up later the

standard mental models shared by groups of mathematicians. This means that

some concepts that I use freely and naturally in my personal thinking are foreign

to most mathematicians I talk to. My personal mental models and structures are
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similar in character to the kinds of models groups of mathematicians share—

but they are often different models. At the time of the formulation of the

geometrization conjecture, my understanding of hyperbolic geometry was a good

example. A random continuing example is an understanding of finite topological

spaces, an oddball topic that can lend good insight to a variety of questions but

that is generally not worth developing in any one case because there are standard

circumlocutions that avoid it.

Neither the geometrization conjecture nor its proof for Haken manifolds

was in the path of any group of mathematicians at the time—it went against

the trends in topology for the preceding 30 years, and it took people by surprise.
To most topologists at the time, hyperbolic geometry was an arcane side branch

of mathematics, although there were other groups of mathematicians such as

differential geometers who did understand it from certain points of view. It

took topologists a while just to understand what the geometrization conjecture
meant, what it was good for, and why it was relevant.

At the same time, I started writing notes on the geometry and topology of 3-

manifolds, in conjunction with the graduate course I was teaching. I distributed

them to a few people, and before long many others from around the world were

writing for copies. The mailing list grew to about 1200 people to whom I was

sending notes every couple of months. I tried to communicate my real thoughts

in these notes. People ran many seminars based on my notes, and I got lots

of feedback. Overwhelmingly, the feedback ran something like "Your notes are

really inspiring and beautiful, but I have to tell you that we spent 3 weeks in our

seminar working out the details of §«.« . More explanation would sure help."

I also gave many presentations to groups of mathematicians about the ideas

of studying 3-manifolds from the point of view of geometry, and about the

proof of the geometrization conjecture for Haken manifolds. At the beginning,

this subject was foreign to almost everyone. It was hard to communicate—

the infrastructure was in my head, not in the mathematical community. There

were several mathematical theories that fed into the cluster of ideas: three-

manifold topology, Kleinian groups, dynamical systems, geometric topology,

discrete subgroups of Lie groups, foliations, Teichmüller spaces, pseudo-Anosov

diffeomorphisms, geometric group theory, as well as hyperbolic geometry.

We held an AMS summer workshop at Bowdoin in 1980, where many math-

ematicans in the subfields of low-dimensional topology, dynamical systems and
Kleinian groups came.

It was an interesting experience exchanging cultures. It became dramatically

clear how much proofs depend on the audience. We prove things in a social

context and address them to a certain audience. Parts of this proof I could

communicate in two minutes to the topologists, but the analysts would need an

hour lecture before they would begin to understand it. Similarly, there were

some things that could be said in two minutes to the analysts that would take

an hour before the topologists would begin to get it. And there were many other

parts of the proof which should take two minutes in the abstract, but that none

of the audience at the time had the mental infrastructure to get in less than an
hour.

At that time, there was practically no infrastructure and practically no context

for this theorem, so the expansion from how an idea was keyed in my head to
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what I had to say to get it across, not to mention how much energy the audience

had to devote to understand it, was very dramatic.

In reaction to my experience with foliations and in response to social pres-

sures, I concentrated most of my attention on developing and presenting the

infrastructure in what I wrote and in what I talked to people about. I explained

the details to the few people who were "up" for it. I wrote some papers giv-

ing the substantive parts of the proof of the geometrization theorem for Haken

manifolds—for these papers, I got almost no feedback. Similarly, few people

actually worked through the harder and deeper sections of my notes until much

later.
The result has been that now quite a number of mathematicians have what

was dramatically lacking in the beginning: a working understanding of the con-

cepts and the infrastructure that are natural for this subject. There has been

and there continues to be a great deal of thriving mathematical activity. By
concentrating on building the infrastructure and explaining and publishing def-

initions and ways of thinking but being slow in stating or in publishing proofs

of all the "theorems" I knew how to prove, I left room for many other peo-

ple to pick up credit. There has been room for people to discover and publish

other proofs of the geometrization theorem. These proofs helped develop math-

ematical concepts which are quite interesting in themselves, and lead to further

mathematics.

What mathematicians most wanted and needed from me was to learn my ways

of thinking, and not in fact to learn my proof of the geometrization conjecture

for Haken manifolds. It is unlikely that the proof of the general geometrization

conjecture will consist of pushing the same proof further.

A further issue is that people sometimes need or want an accepted and val-

idated result not in order to learn it, but so that they can quote it and rely on

it.

Mathematicians were actually very quick to accept my proof, and to start

quoting it and using it based on what documentation there was, based on their

experience and belief in me, and based on acceptance by opinions of experts

with whom I spent a lot of time communicating the proof. The theorem now is

documented, through published sources authored by me and by others, so most

people feel secure in quoting it; people in the field certainly have not challenged

me about its validity, or expressed to me a need for details that are not available.

Not all proofs have an identical role in the logical scaffolding we are building

for mathematics. This particular proof probably has only temporary logical

value, although it has a high motivational value in helping support a certain

vision for the structure of 3-manifolds. The full geometrization conjecture is

still a conjecture. It has been proven for many cases, and is supported by a great

deal of computer evidence as well, but it has not been proven in generality. I

am convinced that the general proof will be discovered; I hope before too many

more years. At that point, proofs of special cases are likely to become obsolete.

Meanwhile, people who want to use the geometric technology are better off to

start off with the assumption "Let M3 be a manifold that admits a geometric

decomposition," since this is more general than "Let Af3 be a Haken mani-
fold." People who don't want to use the technology or who are suspicious of
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it can avoid it. Even when a theorem about Haken manifolds can be proven

using geometric techniques, there is a high value in finding purely topological

techniques to prove it.

In this episode (which still continues) I think I have managed to avoid the

two worst possible outcomes: either for me not to let on that I discovered what

I discovered and proved what I proved, keeping it to myself (perhaps with the

hope of proving the Poincaré conjecture), or for me to present an unassailable

and hard-to-learn theory with no practitioners to keep it alive and to make it

grow.

I can easily name regrets about my career. I have not published as much

as I should. There are a number of mathematical projects in addition to the

geometrization theorem for Haken manifolds that I have not delivered well or

at all to the mathematical public. When I concentrated more on developing

the infrastructure rather than the top-level theorems in the geometric theory of

3-manifolds, I became somewhat disengaged as the subject continued to evolve;

and I have not actively or effectively promoted the field or the careers of the

excellent people in it. (But some degree of disengagement seems to me an

almost inevitable by-product of the mentoring of graduate students and others:

in order to really turn genuine research directions over to others, it's necessary

to really let go and stop oneself from thinking about them very hard.)

On the other hand, I have been busy and productive, in many different ac-

tivities. Our system does not create extra time for people like me to spend on

writing and research; instead, it inundates us with many requests and opportu-

nities for extra work, and my gut reaction has been to say 'yes' to many of these

requests and opportunities. I have put a lot of effort into non-credit-producing

activities that I value just as I value proving theorems: mathematical politics,

revision of my notes into a book with a high standard of communication, ex-

ploration of computing in mathematics, mathematical education, development

of new forms for communication of mathematics through the Geometry Center

(such as our first experiment, the "Not Knot" video), directing MSRI, etc.

I think that what I have done has not maximized my "credits". I have been

in a position not to feel a strong need to compete for more credits. Indeed, I

began to feel strong challenges from other things besides proving new theorems.

I do think that my actions have done well in stimulating mathematics.


