Mock modularity and a secondary invariant

Theo Johnson-Freyd

String Math 2020, Stellenbosch University

Based on arXiv:1904.05788, joint with Davide Gaiotto.

These slides: categorified.net/StringMath2020.pdf.

perimeter $\widehat{\mathbf{P}}$ institute for theoretical physics

Plan for the talk:

The space of sqfts Old and new invariants Topological modular forms The space of sqfts

Given an sqft \mathcal{F} (in this talk: (1+1)d, $\mathcal{N}=(0,1)$), might ask:

- (1) Is supersymmetry spontaneously broken in \mathcal{F} ? I.e. is \mathcal{F} null?
- (2) Can spontaneous susy breaking be triggered by a small susy-preserving deformation?
- (3) Can *F* be connected by a path in space SQFT = {sqfts} to one with spont susy breaking? I.e. is *F* nullhomotopic?

Questions (2,3) depend on analytic decisions about the space SQFT. I will use compact sqfts: all Wick-rotated partition functions $tr_{\mathcal{H}}(\exp(-t\hat{H} - x\hat{P}))$ converge absolutely for t > 0.

The topology on I want on SQFT is something like "strong convergence of the resolvent." In this topology, an eigenvalue can go to $+\infty$, in which case the corresponding eigenvector is deleted.

Conjecture: {possibly-noncompact sqfts} is contractible.

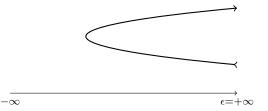
Example: Free (0, 1) scalar multiplet $(\phi, \bar{\phi}, \psi)$ is noncompact. (ψ is right-moving fermion, the superpartner of full boson $(\phi, \bar{\phi})$.) Add in a left-moving fermion λ . Turn on a superpotential $W = (\phi^2 - \epsilon)\lambda$, with $\epsilon \in \mathbb{R}$. This compactifies the sqft.

(1)
$$\epsilon < 0$$
: sqft is null.

(2) $\epsilon = 0$: far IR is a (1,1) minimal model.

(3) $\epsilon > 0$: two massive vacua (of opposite Arf invariants).

As ϵ runs from $-\infty$ to ∞ , these sqfts trace out a cobordism from \emptyset to two points (of opposite orientation).



The (0, 1) sigma model makes sense if the target manifold X is string: metric, spin structure, and 3-form $\frac{1}{2\pi}H$ with integral periods solving $\frac{1}{2\pi}dH = -\frac{1}{16\pi^2} \operatorname{tr}(R \wedge R)$; classically, H = dB.

Gaiotto–JF–Witten: String cobordisms \rightsquigarrow homotopies in SQFT. **Proof:** Add a left-moving fermion λ . Turn on a superpotential. λ acts as a Lagrange multipler.

In particular, if X is string nullcobordant ($X = \partial Y$ for a string manifold Y), then sigma model for X is nullhomotopic.

Example: $X = S_k^3 := \text{round } S^3 \text{ with } \frac{1}{2\pi} \int_{S^3} H = k$. Far IR behaviour: (0,1) WZW model with bosonic WZW levels (|k| - 1, |k| + 1). (We believe susy spont breaks when k = 0.)

String nullcobordant iff $k \in 24\mathbb{Z}$ (via connect sum of K3 surfaces). **Question:** If $k \notin 24\mathbb{Z}$, is S_k^3 sigma model nullhomotopic?

Old and new invariants

Question: If $k \notin 24\mathbb{Z}$, is S_k^3 sigma model nullhomotopic?

How to show \mathcal{Y} is not nullhomotopic? Find a deformation invariant which is nonzero for \mathcal{Y} , but zero for null sqfts.

Famous example:

The Witten index aka elliptic genus is (up to a normalization convention) the Wick-rotated partition function of \mathcal{Y} on flat tori with nonbounding spin structure (Ramond in both space and time).

A priori, it is an area-dependent real-analytic modular form $Z_{RR}(\mathcal{Y})(\tau, \bar{\tau}, \text{area})$, meromorphic at $\tau \to i\infty$.

Famous example (con't): However,

(i)
$$\frac{\partial}{\partial \bar{\tau}} Z_{RR} \propto \langle T_{\bar{z},\bar{z}} \rangle \propto \langle \bar{Q}[\bar{G}_{\bar{z}}] \rangle$$
, $\frac{\partial}{\partial \text{area}} Z_{RR} \propto \langle T_{\bar{z},z} \rangle \propto \langle \bar{Q}[\bar{G}_{z}] \rangle$
If \mathcal{Y} is compact, then $\langle \bar{Q}[O] \rangle = 0$ for any observable O .
(\bar{Q} is the (0,1) susy, and ($\bar{G}_{z}, \bar{G}_{\bar{z}}$) is its supercurrent.)
So $Z_{RR}(\mathcal{Y})(\tau)$ is a (weakly) holomorphic modular form.

(ii) Break manifest modularity by choosing a small A-cycle and large B-cycle. Then recognize the *q*-expansion of $Z_{RR}(\mathcal{Y})$ as supersymmetric index of an S^1 -equivariant $\mathcal{N}=1$ SQM model, i.e. a count of susy ground states. So $Z_{RR}(\mathcal{Y}) \in \mathbb{Z}_{RR}((q))$.

Since integers cannot deform, $Z_{RR}(-)$: SQFT \rightarrow MF_Z is a deformation invariant.

Sadness: $Z_{RR}(S_k^3) = 0$.

What if \mathcal{Y} is noncompact?

If it is badly noncompact, then $Z_{RR}(\mathcal{Y})$ simply isn't defined.

Mild noncompactness: \mathcal{Y} has cylindrical ends \mathcal{X} , parameterized by observable Φ if you can turn on a Lagrange multiplier λ and superpotential $W = (\Phi - \epsilon)\lambda$ so that when $\epsilon \ll 0$, theory is null, whereas when $\epsilon \gg 0$, theory $\rightarrow \mathcal{X}$.

I will write this as $\partial \mathcal{Y} = \mathcal{X}$.

If $Z_{RR}(\mathcal{X}) = 0$, then $Z_{RR}(\mathcal{Y})$ converges conditionally. In lagrangian formalism, it is again manifestly a real-analytic modular form (area-dependent).

Example: ∂ (cigar SL(2, \mathbb{R})/SU(2)) = S^1 .

What if \mathcal{Y} is noncompact? Suppose $\partial \mathcal{Y} = \mathcal{X}$.

(i') Still true that

$$rac{\partial}{\partial ar{ au}} Z_{RR} \propto \langle T_{ar{z},ar{z}}
angle \propto \langle ar{Q}[ar{G}_{ar{z}}]
angle, \quad rac{\partial}{\partial ext{area}} Z_{RR} \propto \langle T_{ar{z},z}
angle \propto \langle ar{Q}[ar{G}_{z}]
angle.$$

Why $\langle \bar{Q}[O] \rangle_{\mathcal{Y}} = 0$ if \mathcal{Y} is compact? Because it is the (path) integral of a total derivative. If $\partial \mathcal{Y} = \mathcal{X}$, then have Stokes' theorem: $\langle \bar{Q}[O] \rangle_{\mathcal{Y}} \propto \langle O \rangle_{\mathcal{X}}$. After checking normalizations,

Claim (Gaiotto-JF): Holomorphic anomaly equation

$$\sqrt{-8 au_2}\eta(au)rac{\partial}{\partial ar{ au}} Z_{RR}(\mathcal{Y}) = \langle ar{ extbf{G}}_{ar{ extbf{z}}}
angle_{\mathcal{X}}$$

(up to convention-dependent power of $\sqrt[4]{-1}$.)

Similarly, $\frac{\partial}{\partial area} Z_{RR}(\mathcal{Y}) \propto \langle \bar{G}_z \rangle_{\mathcal{X}} = 0$ if \mathcal{X} is superconformal.

What if \mathcal{Y} is noncompact? Suppose $\partial \mathcal{Y} = \mathcal{X}$.

(ii') Any (nice enough) real-analytic modular form $\hat{f}(\tau, \bar{\tau})$ has a *q*-expansion, defined as the *q*-expansion of

$$f(\tau) := \lim_{\bar{\tau} \to -i\infty} \hat{f}(\tau, \bar{\tau}).$$

The limit breaks modularity. The *q*-expansion of $Z_{RR}(\mathcal{Y})$ is still an S^1 -equivariant supersymmetric index:

$$\lim_{\bar{\tau}\to -i\infty} Z_{RR}(\mathcal{Y}) \in \mathbb{Z}((q)).$$

(This is correct up to an \mathcal{X} -dependent shift related to APS invariants and mod-2 indexes, and for most \mathcal{X} it is zero.)

Conclusion (Gaiotto–JF): If $\partial \mathcal{Y} = \mathcal{X}$ (and \mathcal{X} is superconformal), then $\lim_{\bar{\tau} \to -i\infty} Z_{RR}(\mathcal{Y})$ is an integral (up to shift) (generalized) mock modular form with shadow $\langle \bar{G}_{\bar{z}} \rangle_{\mathcal{X}}$.

Conclusion (Gaiotto–JF): If $\partial \mathcal{Y} = \mathcal{X}$ (and \mathcal{X} is superconformal), then $\lim_{\bar{\tau} \to -i\infty} Z_{RR}(\mathcal{Y})$ is an integral (up to shift) (generalized) mock modular form with shadow $\langle \bar{G}_{\bar{z}} \rangle_{\mathcal{X}}$.

Contrapositively, if we only know \mathcal{X} , can compute $g(\tau, \bar{\tau}) = \langle \bar{G}_{\bar{z}} \rangle_{\mathcal{X}}$ (& shift of integrality). The obstruction to g being the shadow of an integral (generalized) mock modular form lives in

$$\frac{\mathbb{C}(\!(q)\!)}{\mathbb{Z}(\!(q)\!) + \mathrm{MF}_{\mathbb{C}}}$$

To compute this obstruction, solve $\sqrt{-8\tau_2}\frac{\partial}{\partial\bar{\tau}}\hat{f} = g$ among real-analytic modular forms (this can always be done). Then take the class of the *q*-expansion of $f = \lim_{\bar{\tau} \to -i\infty} \hat{f}$.

"Theorem" (Gaiotto–JF): This obstruction is a deformation invariant of the sqft \mathcal{X} . We call it the secondary elliptic genus.

Motivating example: Take $\mathcal{X} = S_k^3$, or rather its far-IR limit, the $\mathcal{N}=(0,1)$ WZW model with bosonic levels (|k|-1, |k|+1).

$$ar{G}_{ar{z}}=\sqrt{rac{-2}{|k|+1}}\,ar{\psi}_1ar{\psi}_2ar{\psi}_3+$$
 proportional to $ar{\psi}_{a}ar{J}_{a}$

where \bar{J}_a are the right-moving currents in the bosonic WZW model, and $\bar{\psi}_a$ are their superpartners. Since $\langle \bar{\psi}_a \bar{J}_a \rangle = 0$, find:

$$\langle \bar{G}_{\bar{z}} \rangle = \sqrt{\frac{-2}{|k|+1}} \, \eta(\bar{\tau})^3 \, Z(\text{bosonic SU}(2)_{|k|-1}).$$

Harvey–Murthy–Nazaroglu: This is the shadow of an explicit (mixed) mock modular form equal to

$$kE_2(q) + q\mathbb{Z}\llbracket q \rrbracket = -\frac{k}{24} \mod \mathbb{Z}((q)) + \mathrm{MF}_{\mathbb{C}}.$$

Corollary: S_k^3 sigma model is not nullhomotopic if $k \notin 24\mathbb{Z}$.

Topological modular forms

Why did we look for our secondary invariant?

Conjecture (Stolz–Teichner, building on Witten, Segal, Hopkins, ...): The Witten index $Z_{RR} : SQFT \rightarrow MF_{\mathbb{Z}}$ lifts to a topological Witten index $Z_{RR}^{top} : SQFT \rightarrow TMF$, where TMF is the spectrum, aka generalized cohomology theory, of (weakly holomorphic) topological modular forms. Furthermore, Z_{RR}^{top} is a complete invariant: SQFT \simeq TMF are homotopy-equivalent.

Definition: $MF_{\mathbb{Z}}$ is the space of global sections of a graded vector bundle V on the stack $\mathcal{M}_{e\ell\ell}$ of smooth elliptic curves; fibre V_E at $E \in \mathcal{M}_{e\ell\ell}$ is $\bigoplus \text{Lie}(E)^{\otimes n}$. This V_E is the coefficients of E-elliptic cohomology h_E . **Goerss-Hopkins-Miller-Lurie:** There is a derived stack $\mathcal{M}_{e\ell\ell}^{\text{top}}$ of "derived elliptic curves" which carries a bundle of spectra \mathcal{O}^{top} whose fibre at E is h_E . TMF has an algebraic model as the space of derived global sections of \mathcal{O}^{top} .

The conjecture offers an analytic model of TMF.

Why did we look for our secondary invariant?

The primary Witten index $TMF \to MF$ sees all of the non-torsion in $TMF\colon$ it is an isomorphism after tensoring with $\mathbb{C}.$

Bunke–Naumann had already provided an algebrotopological description of a secondary Witten genus for classes in TMF, and proved that it was nonzero for the TMF class of S_k^3 .

Their description makes no reference to mock modularity. We believe that our secondary invariant agrees with theirs (work in progress with Berwick-Evans).

There is further torsion in ${\rm TMF}$ which is not seen by the secondary Witten genus.

Open question: The group manifolds SU(3), Spin(5), and G_2 are known to be nonzero in TMF. Are the corresponding (0,1) sigma models nullhomotopic?

Moonshine connection

Any scft \mathcal{X} which is nullhomotopic in SQFT will provide an integral mock modular form. If \mathcal{X} is nullhomotopic equivariantly for a finite group G of flavour symmetries, then the mock modular form will be valued in characters of G. I think that this is the (a?) physical explanation of umbral moonshine.

A priori, these mock modular forms are only weakly holomorphic: they can be badly meromorphic at the cusp $\tau = i\infty$. Important in "moonshine" is a genus zero / optimal growth condition. I think that this condition is best expressed in terms of *G*-equivariant topological cusp forms. (A cusp form is a modular form that vanishes at $\tau = i\infty$.)

Open question: What is the physics of strongly holomorphic topological modular forms (bounded at the cusp)? What is the physics of topological cusp forms?

Thank you!

Further details:

[arXiv:1811.00589] Holomorphic SCFTs with small index

[arXiv:1902.10249] A note on some minimally supersymmetric models in two dimensions

[arXiv:1904.05788] Mock modularity and a secondary elliptic genus

[arXiv:2006.02922] Topological Mathieu moonshine

[these slides] http://categorified.net/StringMath2020.pdf