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2 THEO JOHNSON-FREYD

0. Caveat lector

These notes are unedited and verbose. They accomplish exactly the worst type of talk prepara-
tion: too little practice and organization for this to be a good “well prepared” type of lecture; too
much practice and material for this to a good “off the cuff” lecture.

After the talk, we spent more time carefully calculating the low-degree homotopy groups. The
calculations are as reported in these notes except for π4W, or dually π5B Gal. The non-torsion in
the Witt group does not simply go away when we decide to only work with torsion things. It gets
adjusted. Indeed, working spectrally, Z[tor] is a degree-shifted Q/Z, and not just trivial.

The end result is that fibre(G/Gal→ `∨) has two nontrivial homotopy groups, and not just one
as reported. They are:

π4 fibre(G/Gal→ `∨) = TrueQuantWitt[tor]∨ = Ext1(TrueQuantWitt, Ẑ) ∼= (Z/2)×∞

π5 fibre(G/Gal→ `∨) = Ext0(TrueQuantWitt, Ẑ) ∼= (Ẑ)×∞

In other words, the fibre looks like the I
Ẑ

-dual of the full truly quantum Witt group, and not just
a dual of the (non-spectral) torsion subgroup. It is also the profinite completion of the IC×-dual.
Profinite completion of spaces/spectra does not simply profinitely complete their homotopy groups.
That is all it does for finitely generated homotopy groups, but the spectral profinite completion of

C× is a shifted Ẑ and not just trivial.
The Postnikov extension from π4 to π5 is noncannonically zero just because in TrueQuantWitt

the torsion subgroup is noncannonically a direct summand. I do not have a conjecture for the full
map from K(Z/2, 4) = fibre(G/PL → L) → fibre(G/Gal → `∨). On π4, it should be the map
reported in Section 9 below. But it can also involve a degree-1 map to π5. Together, these maps
should arise from an “organic” map TrueQuantWitt → Z/2 which on the pseudounitary torsion
subgroup records whether the central charge is 0 or 1

4 mod 1
2 . The existence of such an “organic”

map is one of the corollaries of our conjectured that PL→ Gal.

1. Starting point

In the previous lecture, David explained how to construct W•, the higher separable closure of R.
My goal in this lecture is to actually compute as much as I can about the result of this construction.
In particular, I will try to analyze the higher absolute Galois group Gal(W/R).

Let me pick up where David ended. Suppose you have built W up to height n−1. Then we have
a map

(Σ•Wn−1)×[tor]→ IQ/Z

Aside on conventions: Towers are naturally cohomologically-graded. So I’ll use upper indices, and
they just mean the negativized lower indices. Later we’ll write down some long exact sequences.
The pneumonic for the degree of the connecting map: it goes up with respect to upper indices, and
down with respect to lower indices. I’m always going to index towers so that the top-morphisms are
in degree 0. This includes when I write something like “Σ•Wn−1”: the notation is slightly abusive,
but what I mean is the tower which in degree N > n looks like ΣN−(n−1)Wn−1.

The fibre Fn of the above map are the “missing roots of unity.” The idea is to add some of the
missing roots to get up to Wn, and then repeat. The procedure works because Fn is n-coconnective:
it has

πkFn := π−kF
n = 0 if k < n.

To get to Wn, we add exactly the missing roots in degree n. In other words, Wn is an extension
of ΣWn−1 by the group πnFn. Example. When n = 1, I’m trying to build W1 = sVecC from
W0 = C. So I’m looking at a map of spectra which is an iso on π0 and the injection 1 → Z/2
on π1, so π0(F 0) = Z/2 and π<0(F 0) are trivial. To build sVecC, I extend VecC by this Z/2 (in
degree 1).



SUPER DUPER VECTOR SPACES II 3

Note that the defining property of ΣWn−1 is that (it deloops Wn−1 and) every object is connected
to the unit object by a nonzero morphism. Consider the set of indecomposable objects in Wn

modulo connection by a nonzero morphism. This relation is symmetric because W has adjoints,
but it isn’t obviously transitive. It turns out — the argument is essentially due to Deligne — that
it is transitive when restricted to simple objects. But W that we’ve constructed is semisimple, so
“indecomposable” and “simple” are the same. The equivalence classes under this relation (on Wn)
are, naturally, called π0W

n. I’ll also write it as πnW.
The statement that Wn is an extension of shape ΣWn−1.πnFn then implies that:

πnW = πnFn.

From the long exact sequence for the homotopy groups of a fibre sequence, we find that a certain
exact sequence

· · · → πn−1Fn︸ ︷︷ ︸
=0

→ πn(Σ•Wn−1)×[tor]→ πnIQ/Z → πnFn︸ ︷︷ ︸
=πnW

→ πn+1(Σ•Wn−1)×[tor]→ πn+1IQ/Z → . . .

2. TQFT interpretation

Let me interpret these groups in terms of TQFTs. Specifically, I mean framed TQFTs valued
in W, so this interpretation is purely linguistic: I’m invoking the cobordism hypothesis to give
myself language and pictures for objects and morphisms. I won’t ever actually need to compile the
TQFTs.

Then of course πnIQ/Z are the iso classes of nD invertible TQFTs. The injection

πn(Σ•Wn−1)×[tor] = π0(ΣWn−1)×[tor] ↪→ πnIQ/Z

selects the invertible TQFTs which admit a nonzero boundary condition, and so the cokernel are
the invertible TQFTs which do not admit a boundary condition. Indeed, an object of ΣWn−1 is
a TQFT which can be connected to the vacuum by a boundary condition. Taking (−)× asks the
bulk TQFT, but not the boundary, to be invertible. Then we take iso classes of TQFTs with these
two properties of invertibility and boundability.

The more novel map is

πn+1(Σ•Wn−1)×[tor] = π0(Σ2Wn−1)×[tor]→ πn+1IQ/Z.

Let’s try to understand the domain of this map. There is a map Σ2Wn−1 → ΣWn, and we
understand the latter: it is (n+ 1)D TQFTs Q which admit a boundary condition. More precisely,
it is the TQFTs which admit a sufficiently-generating boundary condition. If the bulk Q is simple
(and invertible implies simple!), then “sufficiently generating” just means nonzero: any choice of
nonzero X : 1→ Q will write the bulk Q as the condensate of Endhom(1,Q)(X). Suppose I’ve chosen

X; then these data will lift to Σ2Wn−1 exactly when Endhom(1,Q)(X) ∈Wn lifts to ΣWn−1.
I claim that this latter lift is automatic if X was simple [over R, I would mean “absolutely

simple”: simple with endomorphisms R and not some other division ring]. Since I might as well
have chosen X simple [warning: this requires that we have at least built C, and not just R], what
I conclude is that the map Σ2Wn−1 → ΣWn is an essential surjection (when restricted to simples,
but then it is for all objects). This is actually really useful, since it means that in our above LES,
for the purposes of computing πnW, I could replace πn(Σ•Wn−1)×[tor] with πn(Σ•Wn−2)×[tor],
since the maps from these groups to πnIQ/Z have the same image. In other words, we get a nice
systematic LES:

· · · → πn(Σ2Wn−2)×[tor]→ πnIQ/Z → πnW→ πn+1(Σ2Wn−1)×[tor]→ . . . (*)

Suppose you know all of pure homotopy theory, for example the homotopy groups of spheres.
Then you will feel like you understand πnW if you can understand the groups πn(Σ2Wn−2)×[tor].
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Look again at this LES (*). There is an obvious map of (non-Karoubian) towers

IQ/Z →W

that includes the invertible TQFTs among all the TQFTs. Up to a degree convention, the fibre of
this map is the tower of anomalous TQFTs: pairs (Q, α), where α is invertible, Q is a boundary
condition of α, and I think of α as the anomaly of Q. A morphism (Q, α) → (Q′, α′) in this tower
consists of: an isomorphism α ∼= α′, and an interface Q → Q′ of TQFTs with identified anomaly.
In terms of the formula “πn(Σ2Wn−2)×[tor]”, the (−)× is saying that Q should be invertible, and
πn is saying that Q should be nD and that I take some equivalence classes. If I just had ΣWn−1,
then I would just be asking for the existence of X, but the morphisms would ignore it. The fact
that I’m asking for Σ2Wn−2 is what makes the morphisms involve interfaces in the X variable:

• πn(Wn)×: Invertible nD TQFTs.
• πn(ΣWn−1)×: Invertible nD TQFTs which have the property of admitting a boundary

condition.
• πn(Σ2Wn−2)×: Invertible nD TQFTs with a choice of boundary condition, modulo inter-

faces between boundary conditions.

We will feel like we understand πnW if we understand the third of these groups.

3. Surgery for Mfr (motivational recitation)

An analogy to motivate the next step of the construction. A TQFT is like a manifold. A
boundary condition is like a filling — a nullbordism. An interface is a bordism. Morse theory:
bordisms are built from handle attachments. If you scan a sequence of handle attachments, it looks
like a sequence of surgeries.

An invertible TQFT is like a (stably) framed sphere. The trivial TQFT is the sphere with
boundary (stable) framing, but for example S1 has another framing, S3 has Z many framings, . . . .
An anomalous TQFT is like a filling of a framed sphere. (Fillings of the boundary-framed sphere
correspond to closed manifolds, up to some convention about marked points.)

So in this analogy, πn(Σ2Wn−2)× is like the space of framed spheres equipped with a filling,
modulo surgering the filling. Foreshadowing: by “sphere” I mean that it might have an exotic
smooth structure.

Now, if you are a manifold theorist, you might could ask: surger your filling to simplify it as
much as possible. For example, can you simplify it all the way to a disk, thereby trivializing the
boundary? This is a relative version of the question for closed manifolds of surgering them until
they become spheres. In the problem we actually want, I could ask: can you surger your boundary
condition X all the way until it is invertible, thereby trivializing the anomaly Q? If not, how close
to trivial can you get? This is basically a story of Sullivan; other major players include Wall and
Ranicki.

Let me remind the closed manifold version. Let’s try to surger it at least to being a homotopy
sphere. We can worry about whether homotopy spheres are spheres some other time. The relative
version that we actually want is the same, you just have to talk about relative homology relative
to the boundary sphere, which is mild because it’s relative to the homology of a sphere

To surger a manifold Mn, what you need to do is to select an embedded Sk; the surgery cuts
out a tubular neighbourhood Sk ×Dn−k of that selected sphere, leaving a manifold with boundary
Sk × Sn−k−1, and then glues in an Dk+1 × Sn−k−1. To actually do this requires a little more
information than the embedded sphere: you need to choose a trivialization of the normal bundle
in order to identify the boundary with Sk × Sn−k−1. I want framed manifolds, so I also need
to make a few more choices in order for the surgery to produce a framed answer. A priori, this
cutting and gluing introduces a piecewise-smooth crease into the manifold. The piecewise-smooth
category is also called the piecewise-linear (PL) category. It is a nontrivial statement that, in
the presence of a framing, any PL (or PDiff) framed manifold has a unique (up to a contractible



SUPER DUPER VECTOR SPACES II 5

space) smoothing compatible with the framing. The manifolds before and after surgery are (rather
obviously) cobordant: you take M × I and then attach a handle Dk+1 ×Dn−k along the original
Sk×Dn−k, and the new boundary is the result of the surgery. Going the other way, pick a cobordism
M0 →M1, and select parameterizing function to [0, 1] (i.e. the function is i on Mi), and wiggle it to
being normal at the boundary and Morse in the bulk. The function selects a handle decomposition
of the bordism, and these handles, in order, are a sequence of surgeries to get from M0 to M1.

Ok, so now what you can do is: take some S1s that generate π1. Assuming n is high enough,
these 1D spheres can fully unlink from each other. So you can surger all of them at the same time:
the surgeries won’t interfere. This kills H1, but might introduce some higher homology. Now repeat
with π2 (= H2, since we’ve killed π1) and so on. You keep killing low homology. But manifolds
have Poincaré duality. So you also kill high homology.

This works as long as the dimensions of the surgered spheres are low enough that you can unlink
them. You get stuck when you get to middle dimension (and it becomes technically hard as you
approach middle dimension). The end result is that if n is odd, then you can surger Mn to a
homology sphere. If n is even, then you can surger it until it only has homology in degree n/2.

Now again recall Poincaré duality. The homology in degree n/2 has an intersection pairing,
which is symmetric if n/2 is even and antisymmetric if n/2 is odd. Slightly nontrivial fact: if the
manifold is stably framed, the framing selects a quadratic refinement of the intersection pairing.

The quadratic Witt group of Z is the commutative monoid of (isomorphism classes of) finitely-
generated free abelian groups A ∼= Zr equipped with a nondegenerate quadratic form q : A → Z,
modulo a relation I’m about to explain. (The group law is orthogonal direct sum.) By quadratic
form, I mean that q(0) = 0, that q(−x) = q(x), and that 〈x, y〉 := q(x + y) − (q(x) + q(y)) is
bilinear. This 〈, 〉 is the second derivative of q, and it is a symmetric bilinear form. It recovers q
by polarization: q(x) = 1

2〈x, x〉. In other words, “quadratic refinement” in this example just means
that 〈, 〉 is even. The form q is called nondegenerate if the map A → hom(A,Z) induced by 〈, 〉 is
an iso.

By definition, a subgroup Y ⊂ (A, q) is called isotropic if q|L vanishes identically. Suppose you
pick an isotropic subgroup. Then the isotropic reduction A � Y is by definition Y ⊥/Y , where
Y ⊥ ⊂ A is the space of vectors with trivial 〈, 〉 against Y . Isotropy for 〈, 〉 is what makes Y ⊂ Y ⊥;
isotropy for q is what makes q descend to L � Y . The relation that defines the Witt group is
generated by declaring that A ∼ A � Y for all isotropics Y .

A theorem about lattices says that this Witt group is isomorphic to Z. Specifically, the signature
of L is p−q, where L⊗R = Rp,q with p positive-definite directions and q negative-definite directions.
For even (quadratic) nondegenerate lattices, the signature is always in 8Z, and the theorem is that
the signature is the only invariant of a class in the Witt group. (There is a stronger theorem: if L
and L′ have the same signature, then you can find m,n so that A⊕Hm ∼= A′⊕Hn, where H is Z2

with pairing 〈(x, y), (x′, y′)〉 = xy′ + x′y.)
Since I’m about to repeat this story anyway, let me finish the sketch of the surgery story in the

case n ∈ 4Z. I’ll be sketchy. Then what you can show is that any two cobordant manifolds have
intersection forms which are equivalent in the Witt group. On the other hand, the surgery shows
that you can surger your manifold to get any representative of the desired Witt class. So for the
question of achieving a homology sphere, the only obstruction is the signature.

If you work a while, you can do this in families. What we’re really doing is analyzing the
stably-framed cobordism spectrum Mfr, isomorphic to the sphere spectrum S. You’ve probably
heard of the j-homomorphism j : πnO → πnS, given by the action of the orthogonal group on the
sphere. [The more precise thing, if you want to work in families, is to say that you have a map
O → G := GL1(S); the non-group map Ω∞G → Ω∞S is an iso on positive homotopy groups.] In
terms of S ∼= Mfr, what this map does is to select the stable framings on the standard smooth
sphere. This map actually factors through the piecewise linear group PL, and j : πnPL → πnS
selects the framed possibly-exotic spheres. The fancy families version of the surgery story is that
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the PL j-homomorphism is part of a LES

πnPL
j→ πnG→ πnL→

where L is a fancy spectral version of the Witt group.
Actually, this is not quite true. The one part I left out: can you actually engineer every Witt

class as coming from a manifold? The answer is yes except in dimension 4, where Rokhlin’s theorem
says that for smooth spin 4-manifolds, the signature is divisible not just by 8 but by 16 (and you
can realize signature 16). The final statement is that there is a map

G/PL→ L

and it is almost an isomorphism: its fibre is just a K(Z/2, 3), which just encodes this ratio 16Z/8Z
of the actually-realizable signatures modulo the algebraically-possible signatures.

4. Surgery for TQFTs

With this construction in mind, let me now actually explain the surgery for TQFTs. Recall the
problem. We want to understand the set

πn(Σ2Wn−1)× = πn fibre(IQ/Z →W)

=
{invertible nD TQFTs with a choice of boundary condition}

{boundary interfaces}

=
{anomalous (n− 1)D TQFTs }

{interfaces}
We will do this by a version of surgery: we will pick up an (n − 1)D anomalous TQFT, and try
to systematically modify it, always in ways that are separated by topological interfaces, aiming to
simplify it all the way to invertible.

Any (n − 1)D TQFT has an monoidal (n − 2)-category of extended operators. More generally,
if you only want extended operators of dimension ≤ k < n − 1, then you get a k-category. The
state-operator correspondence asserts that if your (n−1)D TQFT is Q, then the k-category of ≤ kD
operators is hom(1,Q(Sn−2−k)). The sphere should be given the framing that bounds a disk. This
is actually just a statement about fully dualizable objects in any category, and how adjunctibility
relates to endomorphism algebras: it generalizes the statement that End(Q) = hom(1,Q ⊗ Q∗) =
hom(1,Q(S0)). This is the category of “external” operators. If you allow “enriched” operators,
you just remove the hom(1,−): you get an object of your target tower, and not plain category. If
your Q is anomalous, or more generally relative, then instead of the sphere Sn−2−k, you evaluate
on the closed disk Dn−1−k in which you put the anomaly theory α in the bulk and you put Q on
the boundary.

Note that if Q is invertible, then its dual Q∗ is its inverse Q−1, so you can detect invertibility
from looking at operators: Q is invertible iff there are no operators at all. A stronger statement
is true: if Q is (n − 1)D, then it is invertible as soon as it has no operators of dimension ≤ n−2

2 .
This follows from a more general Poincaré duality statement that I don’t have time to explain,
which says that if you have no operators of dimension k, then all there are no “new” operators of
dimension n− 2− k: they are all built by condensing operators of lower dimension.

The algebra Q(Sn−2−k) ∈Wk+1 of operators of dimension ≤ k is automatically En−1−k-monoidal,
and of category number k. (Counting: you get one unit of monoidality for each direction transverse
to the operator.)

Now I really use strongly that our W is coconnective, so that an object of Wk+1 is like a (k, k)-
category and not like an (∞, k)-category. In this case, the stability hypothesis says that En−1−k-
monoidality canonically and automatically becomes E∞-monoidality as soon as n− 1− k ≥ k + 2.
I.e. this happens when k ≤ n−3

2 .
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In the analogy, this E∞-monoidality of the top approximately-half of the operators corresponds
to the unlinking of the bottom approximately-half of the homology.

But now I am in business, because I am working over a separably-closed tower W! Let k := bn−3
2 c,

and A = Q(Sn−2−k). Then there is a natural “Σ•A” which is a W-linear tower. It is fully finite
over W because of the full dualizability of our TQFT. So it maps (W-linearly) back to W.

Let X = homW(A,W). Part of the separable closure story that David didn’t have time to tell
you is that (X has finite homotopy groups and) the canonical map

A→WX

built from currying is an equivalence — you always have this map, but it is separable-closure of W
that makes it an equivalence.

Pick a map x ∈ X. If Q was simple, which I assumed it was anyway, then this turns out not to be
much of a choice: X is connected. What I’m going to do is to “condense” or “ungauge” the subsector
A of Q. It’s called “ungauging” because X = BG for G = ΩxX, and if you built a gauge theory
with gauge group G, it would have Wilson operators parameterized by A = WX = RepW(G). It’s
called “condensing” because it has the effect of freezing out these operators down to just being

in W. The actual procedure is the following. The composition W → A
x→ W is the identity. So

the composition A
x→W→ A is an idempotent. But A was realized as (internal, aka W-enriched)

operators on object Q ∈W. Using also the algebra structure on A, and the full-dualizability of Q,
all together you can build a higher idempotent Q → Q. By definition, the condensation Q � A (at
the map x) is the splitting of this higher idempotent.

Since it arises from splitting an idempotent, Q � A comes with a morphism to Q: they are
“cobordant”. On the other hand, because we’ve condensed them away, Q � A has no operators of
dimension ≤ k!

I want you to think of this like surgering away for low-dimensional homology. By the way, I did
this once and for all for k := bn−3

2 c. But I could have done it step by step, just like in the manifold
case.

Now look. We’ve killed all operators of dimension ≤ n−3
2 in our (n−1)D TQFT. We are invertible

if we have killed all operators of dimension ≤ n−2
2 . Half the time these are the same bound: when

n is odd, bn−2
2 c = bn−3

2 c = n−3
2 .

Every (odd − 1)D TQFT, possibly anomalous, is cobordant to an invertible TQFT
(which in turn trivializes the anomaly).

The anomaly itself is an nD invertible theory, i.e. an element πnIQ/Z. So what I’m saying is:
a nontrivial odd-dimensional invertible theory never has topological boundary condi-
tions. Remember why we cared about this: we wanted to understand πnW. So what I’m saying
is: when n is odd, πnIQ/Z → πnW is injective. The cokernel is precisely the bordism classes of
non-anomalous nD theories that cannot be surgered to an invertible theory, which is part of the
“n+ 1” case of the above surgery.

When n is even, then bn−2
2 c = n−2

2 > bn−3
2 c = n−2

2 − 1. So we are potentially left with some

operators in “middle” dimension n−2
2 .

5. Middle-dimensional operators

Let’s continue to analyze the case where n = 2m is even. We have surgered our n−1D anomalous
TQFT to one whose operators are only in dimension m−1 (in the sense that all other operators, of
all other dimensions, are condensates). (m − 1)-dimensional operators compile into a W-enriched
(m− 1)-category; it is Em-monoidal since the total theory if 2m− 1-dimensional.

Moreover, since W is (ind-finite) semisimple and Q is very dualizable, this Em-monoidal (m−1)-
category is a (ind-finite) fusion.
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Proposition (generalization of JF-Yu): Suppose m− 1 ≥ 2. Then any (possibly ind-finite)
fusion m− 1-category C with operators only in dimension m− 1 is automatically groupal : there is
a (ind-finite) group A so that C is a twisted group algebra of A. This really uses semisimplicity!

Because I want my group algebra to be W-linear, the twist is a cohomology class valued in IC× ;
it factors through IQ/Z because A is finite. Because I want my algebra to be Em-monoidal, the
cohomology is of the space K(A,m). And because I want an (m − 1)-category, the twist has m
more units of cohomological degree than there were units of monoidality. In other words:

{Em-monoidal W-linear (m− 1)-category group algebras of A} = I2m
Q/Z(K(A,m)).

First nontrivial calculation: For any finite abelian group A and m > 0,

I2m
Q/Z(K(A,m)) =

{
{Q/Z-valued symmetric forms on A}, m even,

{Q/Z-valued skew-symmetric forms on A}, m odd. �

There is an obvious map from the LHS to the RHS — the nontrivial calculation is that this
map is an iso for these specific degrees. The map is called the S-matrix. It is also called the
commutator. Here’s what you do. Take a, b ∈ A; they correspond to invertible objects, well-defined
up to invertible scalar, in our group algebra C. Now take a pair of Hopf-linked Sm−1s; this makes
sense because my ambient space is 2m − 1-dimensional. (To be precise: use invertibility to know
that you only need stable framings, not framings, on your sphere, and then choose the bounding
framings.) Place a on the first Sm−1 and b on the second and evaluate. The choice of overall
scalar cancels when I wrap around the sphere. This is all valid because I’m in an Em-monoidal
(m−1)-category with lots of duality. The result will evaluate to a C×-number, which will be a root
of unity because A is finite. Indeed, it is rather obviously linear in a, b, and so we have defined a
pairing 〈, 〉 : A⊗A→ Q/Z. Finally, it is a fun exercise that this pairing is (skew)m-symmetric.

The “Poincaré duality” that applies to any TQFT in this case says that this pairing is non-
degenerate: the induced map A → A∨ := hom(A,Q/Z) is an isomorphism. Conversely, any A
with a nondegenerate class in I2m

Q/Z(K(A,m)) does arise. The way you should think is: a class in

I2m
Q/Z(K(A,m)) is an IQ/Z-valued function on K(A,m). The pairing 〈, 〉 is the second derivative

of the function, evaluated at the basepoint (the only point!) in K(A,m). Nondegeneracy is the
request that the function be Morse.

Finally, for any choice of isotropic Y ⊂ A, we can further condense to a theory with operators
A � Y := Y ⊥/Y .

The Witt group of (skew)m-symmetric finite abelian groups is the commutative monoid of (skew)m-
symmetric finite abelian groups, modulo isotropic reduction.

Cobordism classes of anomalous (even−1)-dimensional TQFTs, in dimension even >
4, are classified by a Witt group of finite abelian groups.

Finally, what are these Witt groups? Every finite abelian group factors canonically into a product
of abelian p-groups for different primes p. (A p-group is not a group of categorical height p, in spite
of the language that my friends use. For a hundred years “p-group” has meant “group of order a
power of p”. Let’s keep that language.) This means that the Witt groups also factor over primes.

If A has odd order, then every nondegenerate skew-symmetric form on A admits a Lagrangian
Y (I think this is a lemma of Davydov), i.e. Y = Y ⊥, so A � Y = ∗. If A is a 2-group, then there
is either a Lagrangian or there is a maximal isotropic for which A � Y = Z/2 with the unique
skew-symmetric pairing.

In the symmetric case, up to Witt equivalence, every 2-group is either trivial or Z/2. If p is
an odd prime, then Z/p has two isomorphism classes of symmetric forms. The group (Z/p)2 also
has two isomorphism classes of symmetric forms, one of which is Witt trivial and the other isn’t.
Specifically, the forms on Z/p are 2-torsion — their direct sum is Witt trivial — exactly when −1
is a square mod p; otherwise they are each other’s inverses. The nontrivial form on (Z/p)2 is then
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either the sum of two copies of the same form on Z/p or the sum of the two different ones. This is
all the Witt-equivalence classes.

Summarizing, we find that for n > 4:

{anomalous (n− 1)D TQFTs valued in W}
interfaces

=


0, n ≡ 1, 3 (mod 4)

Z/2, n ≡ 2 (mod 4)

Witt, n ≡ 0 (mod 4)

where

Witt =
⊕

p prime


Z/2, p = 2,

(Z/2)2, p ≡ 1 (mod 4),

Z/4, p ≡ 3 (mod 4)

6. Gravitational anomalies usually enforce gaplessness

Let me introduce a name: `n is the 4-periodic sequence of groups above. To remind, the com-
putation that produced `n was in serve to computing πnFn = πnW. Namely, we had a long exact
sequence

· · · → `n → πnIQ/Z → πnW→ `n+1 → . . . .

Now pick a class [A, 〈, 〉] ∈ `n. What can we say about its image in πnIQ/Z? The answer is: a
lot. If n is odd, there’s nothing to say. Suppose that n = 2m is even. Then, by retracing our steps,
what we have is the bulk TQFT defined by a groupal Em-monoidal (m − 1)-category. Since it is
groupal, the physics of this TQFT is just a (generalized) Dijkgraaf–Witten theory. So in principle
we can compute it exactly.

Suppose that m is even. I’m going to quote three facts. First fact: every Q/Z-valued symmetric
form on a finite abelian group admits a quadratic refinement. Second fact: a choice of quadratic
refinement selects an orientation structure on this a-priori-framed invertible theory. Third fact: in
dimension n divisible by 4, the map Ωn

SO → πnIQ/Z vanishes, because the elements of Ωn
SO are all

characteristic classes, which vanish on framed manifolds.
Suppose, on the other hand, that m is odd (so n = 2 (mod 4)). If [A, 〈, 〉] 6= 0, then A might as

well be Z/2, with the form 〈a, b〉 = (−1)ab, which is skew-symmetric because we’re in characteristic
2. The corresponding Dijkgraaf–Witten theory is called the Arf–Kervaire invariant.

A highly nontrivial computation of Hill, Hopkins, and Ravenel says that the Arf–Kervaire in-
variant vanishes on framed n-manifolds unless n = 2, 6, 14, 30, 32, and possibly 126.

Except for five or six choices (these Arf–Kervaire invariants), a nontrivial invertible
framed TQFT does not admit a topological boundary condition, in any semisimple
category. Any physical boundary condition cannot be topological in the deep IR, and so must
have massless modes.

(Topological=gapped theories are insulation. Gapless theories are conducting, because it easy
to excite a current to run through them. If you could engineer a bulk material to be nontrivially-
invertible even as a framed theory, then it will automatically be a topological insulator with con-
ductance on the boundary.)

7. Coherent surgery and finite abelian Chern–Simons theories

What’s really going on coherently?
Define the higher absolute Galois group of R to be the group of automorphisms Gal := Gal(W/R) =

AutR(W). Using the uniqueness of W, together with what is essentially a classical Galois theory
argument, what you find is that in low homotopy types:

π≤n Gal = Gal(Wn/R).
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This lets you compute πn Gal: the only thing a degree-n automorphism of Wn could do is to assign
a C×-number to each object, and the only conditions are that connected objects have the same
number and the products of objects get the product of numbers. In other words,

πn Gal = (πnW)∨

where (−)∨ means hom(−,C×), or equivalently (since the groups we care about are all torsion)
hom(−,Q/Z). So we get a dual surgery long exact sequence when n > 4:

· · · → `∨n+1 → πn Gal→ πnS→ `∨n → . . .

This is extremely close to the surgery sequence for G/PL.
The group Gal manifestly acts on IQ/Z. The automorphism group of IQ/Z is essentially the

automorphism group G of the sphere. It would be if I used S1 instead of Q/Z. That I’m just using

torsion parts means only that G is profinitized to Ĝ, and the map G → Ĝ is an iso in positive

degrees and the inclusion Z× → Ẑ× in degree 0.
In general, the action of a Galois group on the roots of unity is called the cyclotomic character.

Every absolute Galois group will act on IQ/Z.

So our LES looks like it is a description of Ĝ/Gal. Is it?
A point in B Gal is a tower noncanonically isomorphic to W: B Gal is “the space of abstract Ws.”

Similarly, BG is “the space of abstract IQ/Zs.” Pick some reference standard IQ/Z. Then G/G is
the (trivial!) space of abstract IQ/Zs equipped with an isomorphism to the standard reference one.

So a point in Ĝ/Gal is a pair (W, γ) where W is some (non-canonical) separable closure of R in
towers, and γ is an isomorphism of your chosen W×[tor] with my standard reference IQ/Z.

The LES means we should expect that there is some “L-theory spectrum” `•, and that Ĝ/Gal
looks like Ω∞`∨• except in low degree, where for π-(ind- or pro-)finite spectra (−)∨ means the
IQ/Z-dual. By “L-theory” here I mean a rather general sense, first sketched by Lurie in his surgery
lectures and fully constructed in a beautiful nine-author paper.

To get this to work, I need to build a coherent version of `. An obvious guess: there is an
L-theory of π-finite spectra equipped with a symmetric form. This will produce exactly the right
groups. But is it the right guess?

Remember that what ` wants to do is to map to the space of pairs (invertible theory, boundary
condition). It’s specifically supposed to do this via some rather simple Dijkgraaf–Witten type
construction about abelian groups and symmetric forms. Suppose that A is a π-finite spectrum,
and 〈, 〉 : A ⊗ A → IQ/Z is a symmetric form of degree n. Can you build from this a Dijkgraaf–
Witten theory? Yes, but it is the wrong one. To build a Dijkgraaf–Witten theory, what you need is
a degree-n function Ω∞A → IQ/Z. A symmetric pairing determines the quadratic function 〈a, a〉,
but its second derivative is 2〈, 〉, and in characteristic 2 that is obviously the wrong choice.

The next guess is that we should use quadratic forms. There is also an L-theory of those. But it
has the wrong L-groups, and not every symmetric bilinear form on a spectrum admits a quadratic
refinement (not even up to Witt equivalence). For example, the skew-symmetric form on Z/2,
when converted into a symmetric form on BZ/2, does not.

Here are the criteria I want. I want to do something L-theoretical, which is to say something
about quadratic functions. And I want to be able to engineer second derivatives of quadratic
functions. The trick is: no one forces me to use a homogeneous quadratic function (aka quadratic
form).

The spectrum ` is defined as the L-theory spectrum of π-finite spectra equipped with a possibly-
inhomogeneous quadratic function q. Heuristically, “possibly inhomogeneous” means that q(0) = 0
(no constant term) but q(a) is not necessarily equal to q(−a), i.e. there can be a linear term.

I’ve been talking about L-theory spectra. What are they? Heuristically, a k-cocycle is a nonde-
generate thing of the type that you care about, where the quadratic information is of degree k. A
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co-homology between cocycles is a Lagrangian correspondence. In other words, you build a “sym-
plectic category” that goes in both directions, where a k-endomorphism of the identity is (A, q)
with q of degree k and nondegenerate (induced map A→ A∨ is an iso), and a map (A, q)→ (A′, q′)
is a span A← B → A′, and isomorphism q|B ∼= q′|B, and the nondegeneracy condition is that the
induced commutative square B → A⊕A′ ∼= A∨ ⊕A′∨ → B∨ is exact (pushout equiv pullback).

Calculation: This `-theory has the correct homotopy groups. Indeed, the forgetful map to the
`-theory of symmetric forms is an iso in positive cohomological degrees.

Now we’re in business. Suppose that A, q is a connective π-finite spectrum with a degree-n
inhomogeneous quadratic function q : A→ IQ/Z. It selects an object in W as follows:

Gauss(A, q) = colimΩ∞A q.

More precisely, I use some chosen isomorphism γ : W×
∼→ IQ/Z, so I should write this as

Gauss(A, q) = colimΩ∞A γ
−1(Ω∞q).

I call this function “Gauss” because the corresponding TQFT, when evaluated on n-manifolds
Mn, compiles a (generalized) Gauss sum, where you sum over the A-valued cohomlogy of M with
the function Ω∞q. A theorem of Gauss: if (A, q) is nondegenerate, then Gauss(A, q) is invertible,

and a root of unity up to a factor of
√
|A|. Note that |A| =

∏
i |πiA|(−1)i is a positive Q-number.

In the higher version, this factor “
√
|A|” should be interpreted as an euler characteristic theory, so

it trivializes on framed manifolds of positive dimension. For the purposes of narration, I’m going
to fudge the degree-0 part.

But the invertibles in W are in IQ/Z, at least up to a factor of γ.
The end result is that we just in the process constructed a map

Ĝ/Gal→ Ω∞`∨•

that sends (W, γ : W∨[tor]
∼→ IQ/Z) to the (linear!) function

(A, q) 7→ γ−1(Gauss(A, q)).

up to a fudged factor of
√
|A|.

This is the map that our LES is really about. Our LES computation shows that this map is an
isomorphism in degrees > 4.

8. 4-dimensional exceptions

Relatively easy by-hand computations show that πiĜ/Gal → πi`
∨ is an iso when 0 < i < 4.

Running the LES, you find that π1 Gal = Z/2 and π2 Gal = ∗. The Z/2 in degree 1 acts by fermion
parity flip, and arises from the extension Vec → sVec = W1. That π2 Gal = ∗ means that there
is no extension in degree 2: W2 = ΣW1. I fudged the degree-0 piece already, so let me just briefly

say: if I were working over Q rather than R, then π0Ĝ/Gal would be trivial. Over R, this group
is nontrivial, but without the hats π0G/Gal is trivial.

The interesting case is in dimension 4 (affecting π3 Gal). That’s where both classical and quantum
surgery has trouble. The fundamental origin of this trouble is the existence of nonabelian knots.

The question in dimension 4 is to classify possibly-anomalous 3D TQFTs modulo interfaces.
This is a “classical” question in quantum algebra, where a piece of mathematics is called “classical”
if it is from before when the speaker started graduate school; the complete description of the group
in question “well-known”, defined to mean the speaker learned it during graduate school, and so
assumed everyone else already knew it.

Suppose you have a 3D TQFT, perhaps with 4D invertible anomaly. You try to start applying
surgery: you condense out all the operators of dimension ≤ 4−3

2 . Well, that is something: you
condense out the 0D operators. But that’s all you can do. The remaining middle-dimensional
operators are in 1D. The operator content of your TQFT is a braided fusion category B — er,
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a braided super fusion category because we’re working over W2 = ΣsVec. The Poincaré duality
enjoyed by all TQFTs asserts that B is super-nondegenerate, also called slightly degenerate. Two
super-nondegenerate braided fusion categories B,B′ are separated by an interface precisely when
B � B′rev is a Drinfel’d centre of a super fusion category. The group with these generators and
relations is called, not surprisingly, the Witt group of slightly degenerate braided fusion categories.
I’ll call it QuantWitt, where I’m emphasizing the quantum nature of the construction, and I’ll not
record the super-ness in the notation.

If B happens to be groupal, then the analysis from earlier of how B must look proceeds: such
a B is classified by a finite abelian group A together with a nondegenerate symmetric form. This

supplies a map Witt→ QuantWitt, which we knew there must be (since Ĝ/Gal maps to `∨ in all
degrees). It is an amusing exercise to show that a QuantWitt-equivalence between groupal BFCs
is itself groupal, and so a Witt-equivalence. So Witt→ QuantWitt is an injection.

The problem is that in this dimension, my result with Yu does not apply: there are non-groupal
BFCs. The essential reason for this is the existence of nonabelian knotting and linking: there are
just a lot more ways that an S1 can knot in R3 than there are ways an Sm can knot in R2m+1.
This is also what interferes with manifold surgery from working: there are linkings that homology
cannot see, and those linkings interfere with surgery.

An impressive paper of Davydov, Nikshych, and Ostrik gives the complete isomorphism type of
QuantWitt. Their result is: the inclusion Witt→ QuantWitt is non-canonically split; the quotient
is noncanonically isomorphic to (Z/2)⊕∞ ⊕ Z⊕∞. We call this quotient the truly-quantum Witt
group TrueQuantWitt.

The construction David explained only adjoins torsion things — it doesn’t use the Z∞ part, but
it does use the (Z/2)∞ part. The end result is that (in positive degrees):

fibre(G/Gal→ Ω∞`∨) = K(TrueQuantWitt[tor]∨, 4) ∼= K((Z/2)×∞, 4)

π3 Gal = (QuantWitt[tor].Z/24)∨

π3W = Z/24.QuantWitt[tor]

The periods mean “some extension of abelian groups TBD.”
By the way, because of the Z∞ term, the map W× → IC× is not an isomorphism. It is an

isomorphism on torsion, and so the deficit is a Q-vector space. It is specifically

fibre(W× → IC×) = K(Q⊕∞, 4).

You could have run David’s construction but not restrict to torsion things. The results will not be
finite separable, but since the only difference starts in high degree, it is still semisimple, and still a
“Galois” extension in the same way that Q→ C is a Galois extension: the map Q→ CAut(C/Q) is
an iso. (The C story requires the axiom of choice. Ours does not.) The larger thing is a K(Q×∞, 4)-
Galois extension of the smaller, (ind-)fully finite thing we’ve talked about. Anyway, I’ll continue
to focus on the separable version David constructs.

Let’s compare with the manifold theory. There is also a fibre of G/PL → L, which is also only
in degree 4. Namely, Rokhlin’s Theorem says that for a smooth, or equivalently PL, manifold in
dimension 4, the signature is divisible by 16 (and 16 is achievable), whereas L-theory would predict
that 8 was achievable. 8 is achievable for topological manifolds, so the surgery exact sequence does
exactly compute BTop. A bit more work shows that this factor of 2 from Rokhlin’s Theorem is the
only failure of the surgery exact sequence for PL:

fibre(G/PL→ Ω∞L) = K(Z/2, 4).

The term in degree 4 is the Kirby–Siemenmann invariant.
All together we find that Gal and PL look extremely similar. They are built from different

L-theories: by its very nature, Gal is a much more profinite object than PL, and its L-theory is the
profinite version of the L-theory for PL (in the sense that ` is built from profinite abelian groups and
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L is built from finite-rank free abelian groups). And Gal has infinitely many Kirby–Siemenmann
invariants.

We strongly believe, but have not proved, that there is a canonical map PL→ Gal. Specifically:
Conjecture: The PL j-homomorphism factors through the cyclotomic character.

9. Postscript on the Kirby–Siemenmann invariant and π3 Gal

To end, maybe I’ll mention that I do think I know where the factorization of the cyclotomic
character should send the manifold KS invariant, and I definitely know the precise group π3 Gal.

There is a version of QuantWitt built from pseudounitary fusion categories and braided fusion
categories. Pseudounitarity is a property, and there is a natural map c : PseudounitaryQuantWitt→
QuantWitt that includes the nonunitary stuff. I don’t know if this map is an injection, and I think
it’s not expected to be a surjection. But the advantage of PseudounitaryQuantWitt is that it comes
with a canonical map to Q/(1

2Z), called the central charge. Restrict to the torsion subgroup; then

this map factors through Z/2 = {0, 1
4} ⊂ Q/(

1
2Z). This is not the trivial map: the super modular

tensor category Rep(SO(n)n) represents a nontrivial element under this map when n is odd. I
claim that this central charge map c extends canonically to QuantWitt[tor] (and trivializes on the
classical subgroup Witt). It probably does not extend canonically to all of QuantWitt, although
from abstract characterization you know it extends noncanonically.

Our conjectured map PL → Gal comes with two pieces. It predicts a map L → `∨. And the
remaining piece is a map fibre(G/PL→ Ω∞L)→ fibre(G/Gal→ Ω∞`∨), which I predict sends the
KS invariant to this “central charge” function QuantWitt[tor]→ Z/2.

Finally, let me write QuantWitt[tor]c=0 for the kernel of this “central charge” map, so that
QuantWitt[tor] = QuantWitt[tor]c=0.Z/2. There is an extension Z/24 → Z/24 → Z/2. I claim
that there is a not-quite-canonical isomorphism

π3 Gal = (QuantWitt[tor]×Z/2 Z/24)∨ = Z/2.(Z/24×QuantWitt[tor]∨c=0)

where the latter extension is the diagonal one extending 24 to 48 and QuantWitt[tor]∨c=0 to
QuantWitt[tor].
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