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Cobordism Hypothesis

The cobordism hypothesis (Baez–Dolan, Lurie) asserts that (fully
local, framed) TQFTs are classified by:

{nD TQFTs} = Objects(the n-category of TQFTs).

The k-morphisms on this n-category of k-codimensional
topological interfaces. This n-category has duals and adjoints.

The cobordism hypothesis is not contentless: It asserts that such
an n-category exists! (This can fail if you allow non-local TQFTs
or disallow framing-dependence.) It also says that if W is any
n-category with duals and adjoints, then there is some restricted
class of TQFTs such that W = {TQFTs in that class}. But what
n-category contains all TQFTs?
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Semisimplicity

A C-linear n-category Wn is semisimple if (cf Douglas–R):

I Wn is additive (⊕’s) and Karoubi-complete (aka
condensation-complete, cf Gaiotto–JF).

I All (<n)-morphisms in Wn have adjoints. Including
0-morphisms if W is monoidal.

I All hom-1-categories of (n−1)-morphisms are semisimple.
Equivalently, all surjective n-morphisms split, and hom
v-spaces of n-morphisms are f.d. Idea: adjoints ≈ splittings.

A semisimple n-category Wn is compact (cf Décoppet) if it admits
a generating object. (All objects are compact projective.)

A (compact) semisimple TQFT is a TQFT valued in a (compact)
semisimple symmetric monoidal n-category.
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Universal target I

The universal target Vn for (compact) semisimple nD TQFTs is
the (ind-compact) semisimple symmetric monoidal n-category such
that if Wn 6= 0 is any (compact) semisimple symmetric monoidal
n-category, then homsym⊗(Wn,Vn) 6= ∅.

I will take existence of Vn as an ansatz. In the process of
computing Vn, we will prove its uniqueness and existence.

Examples:

I Fundamental theorem of algebra: V0 = C.

I Existence of super fibre functors (Deligne): V1 = sVec.
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Universal target II

Notation: If Cn is a semisimple n-category equipped with a
basepoint 1 ∈ Cn, then its based loop category is ΩCn := EndCn(1).
It is a monoidal semisimple (n−1)-category. Left adjoint to Ω is

Σ = Kar(one-object delooping) ' {compact projective modules}.

Lemma: Vn−1 ' ΩVn. I.e. V• is a categorical spectrum.

Proof: Test universal property on Wn = ΣWn−1.

Lemma: (V•)× ' (IC×)•, the dual to spheres. π0(IC×)n = π̂nS,
where Â := hom(A,C×). (Answers a request a Freed–Hopkins.)

Proof: Test universal property on “group algebras” of spectra.
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Global categorical symmetries I

Choose an n+1D TQFT Q ∈ Vn+1. The algebra of extended
operators in Q is

An = Q(S0) = End(Q) (inner hom in V).

Can interpret A as a (cpt ss) V-linear monoidal n-category.

An object of ΩkAn is an n−kD topological defect in Q. More
precisely, if Zn−k ∈ Vn+1−k is some other n+1−kD TQFT, then
homV(Z,ΩkA) is the collection of ways that an uncoupled copy of
the Z can end along a topological defect in Q. I.e. homV(Z,ΩkA)
are the n−kD topological defects in Q which carry anomaly Z.

Elements of A have adjoints ≈ inverses. So we also think of A as
the global noninvertible aka categorical symmetries of Q.
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Global categorical symmetries II

Pick some other (cpt ss V-linear) monoidal n-category X n, and
pick a map X n → An = End(Q), i.e. an action of X on Q by
global categorical symmetries. To gauge these symmetries requires
choosing an anomaly cancellation datum, aka a fibre functor,
X n → Vn. (Recall: Vn is the unit object in Vn+1.)

The resulting gauged theory is

Q � X = Q⊗X V ∈ Vn+1.

Its operator content is

A � X ∼= EndA(A⊗X V) ∼= V ⊗X A⊗X V.

Example: If X is generated by a group G of invertible objects,
then A � X = A � G = AG/G.
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S-matrix / Pontryagin duality

Two simple objects X ,Y ∈ A are connected if hom(X ,Y ) 6= 0.

Higher Schur’s lemma (cf Douglas–R): Connectivity is an
equivalence relation.

π0A := {connected components}. πkA := π0ΩkA.

These are not typically groups. They are bases for fusion rings.

Theorem [JF–R]: If A = Q(S0) for an nD TQFT Q, then there is
a well-defined and invertible S-matrix with rows indexed by πkA
and columns indexed by πn−k−1A.

Corollary: A is k-connected (A = ΣkΩkA) iff Ωn−k−1A is trivial.
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Lan–Kong–Wen / Surgery theory I

Suppose Q ∈ Vn+1, An = End(Q), and p = bn−12 c.

By the stabilization hypothesis, the En+1−p-monoidal p-category
Ωn−pA is symmetric monoidal. By universality of V, we can
choose an anomaly cancellation datum Ωn−pA → Vp.

In the gauged theory Q � Ωn−pA, we have killed all operators of
high degree. By Pontryagin duality, Q � Ωn−pA is p-connected.

I If n = 2p + 1 is odd, then Q � Ωn−pA is invertible.

I If n = 2p + 2 is even, then Q � Ωn−pA has nontrivial
operators only in middle dimension.
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Galois / Tannaka duality

There is a stronger statement implied by universality. Given cpt ss
symmetric monoidal Wn, define

Spec(Wn) := homsym⊗(Wn,Vn).

It is a π-finite n-groupoid, with an action by the n-categorical
absolute Galois group Galn := Autsym⊗(Vn).

Theorem: The canonical map

Wn → {Galn-equivariant functors Spec(Wn)→ Vn}

is an equivalence of symmetric monoidal n-categories.

The proof requires universality of V, some ambidexterity (cf
Hopkins–Lurie), and some connectivity results.
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Lan–Kong–Wen / Surgery theory II

Suppose n = 2p+1 is odd. Given n+1D TQFT Q with operators
An, the p-groupoid X = Spec(Ωn−pA) is the space of anomaly
cancellation data. This p-groupoid carries a bundle of invertible
n+1D TQFTs (fibre is Q � Ωn−pA). But invertible TQFTs are
classified by V× = IC×. By Tannakian duality, Q is recovered
from this bundle. Physically, the TQFT is the sigma model with
target = X and Lagrangian = [the class in IC×(X )].

Theorem: For any cpt ss sym mon Wn+1, set G = Gal(V/W).
The n+1D TQFTs valued in W are canonically classified by:

I a finite homotopy p-type X

I an action on X by G

I a G -equivariant IC×-valued class on X of degree n+1.
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Lan–Kong–Wen / Surgery theory III

Suppose n = 2p+2 is even. Then our n+1D TQFT Q is
canonically the global sections of a bundle over X = Spec(Ωn−pA)
of TQFTs with operators only p-dimensional operators. More
precisely, for each x ∈ X , let Qx be the fibre, and Ax its operators.
Then πkAx = 0 except for πp+1Ax .

Theorem: Suppose that p ≥ 1 (i.e. n+1 ≥ 5).

I Although typically πkC is just a set, Ax := πp+1Ax is an
abelian group.

I Ax is recovered from Ax together with a class in
(IC×)2p+2(K (Ax , p + 2)), the set of symmetric (p even) or
antisymmetric (p odd) forms on Ax .

I This form gives the S-matrix, which is necessarily
nondegenerate.
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ENO / Postnikov extension theory I

What is the overall structure of Vn? What is the absolute Galois
group Galn := Aut(Vn)?

The identity component is ΣΩVn = ΣVn−1. Its objects are those
TQFTs which admit a topological boundary condition.

Proposition (cf JF–Yu): π0Vn is an abelian group.

Corollary: Vn is a π0Vn-graded extension of ΣΩVn = ΣVn−1.

Thus we can build Vn by induction if we know Vn−1, π0Vn, and
the Postnikov aka ENO extension class

π0Vn → (Σ2Vn−1)×.

LHS is concentrated in π0. RHS = (IC×)n+1 except for π0 and π1.
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ENO / Postnikov extension theory II

Moreover: Vn is universal ⇔ π0Vn represents the presheaf

A 7→ π0 hom
(
A, (Σ2Vn−1)×

)
, A ∈ AbGp.

Why is this representable? Use Σ2Vn−1 ≈ (IC×)n+1 and various
LESs to show the required exactness.

Corollary: Vn exists.

Proposition: The same computation produces an exact sequence

Inv(ΣVn−1)→ π̂nS→ π0Vn → Inv(Σ2Vn−1)→ π̂n+1S

where Inv(−) = iso classes of invertible objects. The maps to π̂•S
record the partition function of the invertible TQFT.
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Which invertible TQFTs are anomalies? I

Inv(ΣVn−1)→ π̂nS→ π0Vn → Inv(Σ2Vn−1)→ π̂n+1S

Unpacking gives:

Inv(ΣVn) = invertible n+1D TQFTs which admit a topological
boundary condition

= anomalous nD TQFTs modulo “remember only
the anomaly”

Inv(Σ2Vn−1) = invertible n+1D TQFTs with a connected
component of topological boundary conditions

= anomalous nD TQFTs modulo top’l interfaces

Corollary: Inv(Σ2Vn−1)� Inv(ΣVn) ↪→ π̂n+1S.
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Which invertible TQFTs are anomalies? II

· · · → π̂nS→ π0Vn → Inv(Σ2Vn−1)→ . . .

When n = 3, Σ2V1 ∼= FusCat and Σ2V2 ∼= BrFusCat, so:

Inv(Σ2V1) = 0, π3S = Z/24, Inv(Σ2V2) = qWitt, π4S = 0,

where qWitt is the quantum Witt group of slightly-degenerate
braided fusion categories studied by Davydov–Nikshych–Ostrik,
and so π0V3 = (Z/24).qWitt. This recovers (and was inspired by)
a construction due to Freed–Scheimbauer–Teleman.

When n ≥ 4, the method of Lan–Kong–Wen applies just as well to
anomalous nD TQFTs as to absolute ones. Every even-dimensional
anomalous TQFT is a sigma model, and hence nonanomalous. I.e.
when n is odd,

Inv(Σ2Vn−1)
0→ π̂nS.
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Which invertible TQFTs are anomalies? III

Take n > 4 even, Q an anomalous n−1D TQFT, and surger it to
one with only middle-dim operators, classified by abelian group A
and an (anti)n/2symmetric form. This has a topological boundary
condition iff A admits a Lagrangian subgroup.

Corollary:
I When n = 4k+2, Inv(Σ2Vn−1) ∼= Z/2. The map

Inv(Σ2Vn−1)→ π̂nS selects the Arf–Kervaire invariant.
I When n = 4k ≥ 8, Inv(Σ2Vn−1) ∼= Witt is the (classical)

Witt group of abelian groups with a symmetric bilinear form.
Since every symmetric bilinear form admits a quadratic
refinement, the map Inv(Σ2Vn−1)→ π̂nS vanishes.

Corollary: The only invertible TQFTs which arise as anomalies of
topological theories are (trivial and) Arf–Kervaire invariants.
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The absolute Galois group

The ∞-categorical absolute Galois group is Gal := Aut(V•). Since

Vn is a graded extension of ΣVn−1, find πnGal = π̂0Vn. In other
words, π4Gal = q̂Witt and, for k > 1,

. . . → 0

→ π4kGal → π4kS
0→ Ŵitt

→ π4k−1Gal → π4k−1S → 0
→ π4k−2Gal → π4k−2S → Z/2
→ π4k−3Gal → π4k−3S → 0
→ . . .

The right-hand column is almost L-theory. As such, Gal is almost
PL =

⋃
PL(n) ∼= fibre(S→ L), where PL(n) = piecewise-linear

automorphisms of Rn. Remark (Lurie): PL(n) = Aut(Bordfrn ).

There’s also something funny about π0Gal
?
= Gal(C/R) ∼= Z/2

versus π0PL = π0O = Z/2. But that’s a story for another day. . .
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