semisimple Classification of TQFTs

Theo Johnson-Freyd (Dalhousie & Perimeter) Mathematics of QFT, MPIM, 29 March 2022

Joint work in progress with David Reutter.

These slides: http://categorified.net/TQFT-MPIM.pdf

Sponsor message: https://scgcs.berkeley.edu/
 gcs2022-conference-and-school/

Table of contents

Introduction

- Cobordism hypothesis
- Semisimple TQFTs
- Universal target category
- Analyzing TQFTs
 - Global categorical symmetries
 - S-matrix / Pontryagin duality
- Lan–Kong–Wen classification
 - Dual to surgery theory
 - Galois / Tannaka duality
- Building the universal target category
 - Analysis via ENO / Postnikov extension theory
 - Which invertible TQFTs are anomalies?
 - Witt groups, L-theory, $\mathrm{Gal} \approx \mathrm{PL}$
- References and acknowledgements

Cobordism Hypothesis

The cobordism hypothesis (Baez–Dolan, Lurie) asserts that (fully local, framed) TQFTs are classified by:

{*n*D TQFTs} = Objects(the *n*-category of TQFTs).

The *k*-morphisms on this *n*-category of *k*-codimensional topological interfaces. This *n*-category has duals and adjoints.

The cobordism hypothesis is not contentless: It asserts that such an *n*-category exists! (This can fail if you allow non-local TQFTs or disallow framing-dependence.) It also says that if W is any *n*-category with duals and adjoints, then there is some restricted class of TQFTs such that $W = \{TQFTs \text{ in that class}\}$. But what *n*-category contains all TQFTs?

Semisimplicity

A \mathbb{C} -linear *n*-category \mathcal{W}^n is semisimple if (cf Douglas-R):

- ▶ Wⁿ is additive (⊕'s) and Karoubi-complete (aka condensation-complete, cf Gaiotto−JF).
- All (<n)-morphisms in Wⁿ have adjoints. Including 0-morphisms if W is monoidal.
- ► All hom-1-categories of (n-1)-morphisms are semisimple. Equivalently, all surjective n-morphisms split, and hom v-spaces of n-morphisms are f.d. Idea: adjoints ≈ splittings.

A semisimple *n*-category W^n is compact (cf Décoppet) if it admits a generating object. (All objects are compact projective.)

A (compact) semisimple TQFT is a TQFT valued in a (compact) semisimple symmetric monoidal *n*-category.

Universal target I

The universal target \mathcal{V}^n for (compact) semisimple *n*D TQFTs is the (ind-compact) semisimple symmetric monoidal *n*-category such that if $\mathcal{W}^n \neq 0$ is any (compact) semisimple symmetric monoidal *n*-category, then hom_{sym} $\otimes (\mathcal{W}^n, \mathcal{V}^n) \neq \emptyset$.

I will take existence of \mathcal{V}^n as an ansatz. In the process of computing \mathcal{V}^n , we will prove its uniqueness and existence.

Examples:

- Fundamental theorem of algebra: $\mathcal{V}^0 = \mathbb{C}$.
- Existence of super fibre functors (Deligne): $\mathcal{V}^1 = \text{SVEC}$.

Universal target II

Notation: If C^n is a semisimple *n*-category equipped with a basepoint $1 \in C^n$, then its based loop category is $\Omega C^n := \operatorname{End}_{C^n}(1)$. It is a monoidal semisimple (n-1)-category. Left adjoint to Ω is

 $\Sigma = \mathsf{Kar}(\mathsf{one-object\ delooping}) \simeq \{\mathsf{compact\ projective\ modules}\}.$

Lemma: $\mathcal{V}^{n-1} \simeq \Omega \mathcal{V}^n$. I.e. \mathcal{V}^{\bullet} is a categorical spectrum.

Proof: Test universal property on $\mathcal{W}^n = \Sigma \mathcal{W}^{n-1}$.

Lemma: $(\mathcal{V}^{\bullet})^{\times} \simeq (I\mathbb{C}^{\times})^{\bullet}$, the dual to spheres. $\pi_0(I\mathbb{C}^{\times})^n = \widehat{\pi_n}\mathbb{S}$, where $\widehat{A} := \hom(A, \mathbb{C}^{\times})$. (Answers a request a Freed-Hopkins.)

Proof: Test universal property on "group algebras" of spectra.

Global categorical symmetries I

Choose an n+1D TQFT $Q \in V^{n+1}$. The algebra of extended operators in Q is

 $\mathcal{A}^n = \mathcal{Q}(S^0) = \operatorname{End}(\mathcal{Q})$ (inner hom in \mathcal{V}).

Can interpret A as a (cpt ss) V-linear monoidal *n*-category.

An object of $\Omega^k \mathcal{A}^n$ is an n-kD topological defect in \mathcal{Q} . More precisely, if $\mathcal{Z}^{n-k} \in \mathcal{V}^{n+1-k}$ is some other n+1-kD TQFT, then hom_{\mathcal{V}}($\mathcal{Z}, \Omega^k \mathcal{A}$) is the collection of ways that an uncoupled copy of the \mathcal{Z} can end along a topological defect in \mathcal{Q} . I.e. hom_{\mathcal{V}}($\mathcal{Z}, \Omega^k \mathcal{A}$) are the n-kD topological defects in \mathcal{Q} which carry anomaly \mathcal{Z} .

Elements of \mathcal{A} have adjoints \approx inverses. So we also think of \mathcal{A} as the global noninvertible aka categorical symmetries of \mathcal{Q} .

Global categorical symmetries II

Pick some other (cpt ss \mathcal{V} -linear) monoidal *n*-category \mathcal{X}^n , and pick a map $\mathcal{X}^n \to \mathcal{A}^n = \operatorname{End}(\mathcal{Q})$, i.e. an action of \mathcal{X} on \mathcal{Q} by global categorical symmetries. To gauge these symmetries requires choosing an anomaly cancellation datum, aka a fibre functor, $\mathcal{X}^n \to \mathcal{V}^n$. (Recall: \mathcal{V}^n is the unit object in \mathcal{V}^{n+1} .)

The resulting gauged theory is

$$\mathcal{Q} /\!\!/ \mathcal{X} = \mathcal{Q} \otimes_{\mathcal{X}} \mathcal{V} \in \mathcal{V}^{n+1}.$$

Its operator content is

$$\mathcal{A} /\!\!/ \mathcal{X} \cong \mathsf{End}_{\mathcal{A}}(\mathcal{A} \otimes_{\mathcal{X}} \mathcal{V}) \cong \mathcal{V} \otimes_{\mathcal{X}} \mathcal{A} \otimes_{\mathcal{X}} \mathcal{V}.$$

Example: If \mathcal{X} is generated by a group \mathcal{G} of invertible objects, then $\mathcal{A} /\!\!/ \mathcal{X} = \mathcal{A} /\!\!/ \mathcal{G} = \mathcal{A}^{\mathcal{G}} / \mathcal{G}$.

S-matrix / Pontryagin duality

Two simple objects $X, Y \in \mathcal{A}$ are connected if $hom(X, Y) \neq 0$.

Higher Schur's lemma (cf Douglas–R): Connectivity is an equivalence relation.

 $\pi_0 \mathcal{A} := \{ \text{connected components} \}. \quad \pi_k \mathcal{A} := \pi_0 \Omega^k \mathcal{A}.$

These are not typically groups. They are bases for fusion rings.

Theorem [JF–R]: If $\mathcal{A} = \mathcal{Q}(S^0)$ for an *n*D TQFT \mathcal{Q} , then there is a well-defined and invertible S-matrix with rows indexed by $\pi_k \mathcal{A}$ and columns indexed by $\pi_{n-k-1} \mathcal{A}$.

Corollary: \mathcal{A} is *k*-connected ($\mathcal{A} = \Sigma^k \Omega^k \mathcal{A}$) iff $\Omega^{n-k-1} \mathcal{A}$ is trivial.

Lan-Kong-Wen / Surgery theory I

Suppose $Q \in \mathcal{V}^{n+1}$, $\mathcal{A}^n = \operatorname{End}(Q)$, and $p = \lfloor \frac{n-1}{2} \rfloor$.

By the stabilization hypothesis, the E_{n+1-p} -monoidal *p*-category $\Omega^{n-p}\mathcal{A}$ is symmetric monoidal. By universality of \mathcal{V} , we can choose an anomaly cancellation datum $\Omega^{n-p}\mathcal{A} \to \mathcal{V}^p$.

In the gauged theory $\mathcal{Q} /\!\!/ \Omega^{n-p} \mathcal{A}$, we have killed all operators of high degree. By Pontryagin duality, $\mathcal{Q} /\!\!/ \Omega^{n-p} \mathcal{A}$ is *p*-connected.

- If n = 2p + 1 is odd, then $\mathcal{Q} // \Omega^{n-p} \mathcal{A}$ is invertible.
- If n = 2p + 2 is even, then Q ∥ Ω^{n−p}A has nontrivial operators only in middle dimension.

Galois / Tannaka duality

There is a stronger statement implied by universality. Given cpt ss symmetric monoidal \mathcal{W}^n , define

```
\operatorname{Spec}(\mathcal{W}^n) := \hom_{\operatorname{sym}\otimes}(\mathcal{W}^n, \mathcal{V}^n).
```

It is a π -finite *n*-groupoid, with an action by the *n*-categorical absolute Galois group $\operatorname{Gal}_n := \operatorname{Aut}_{\operatorname{sym}\otimes}(\mathcal{V}^n)$.

Theorem: The canonical map

 $\mathcal{W}^n \to \{ \operatorname{Gal}_n \text{-equivariant functors } \operatorname{Spec}(\mathcal{W}^n) \to \mathcal{V}^n \}$

is an equivalence of symmetric monoidal *n*-categories.

The proof requires universality of \mathcal{V} , some ambidexterity (cf Hopkins–Lurie), and some connectivity results.

Lan-Kong-Wen / Surgery theory II

Suppose n = 2p+1 is odd. Given n+1D TQFT Q with operators \mathcal{A}^n , the *p*-groupoid $X = \operatorname{Spec}(\Omega^{n-p}\mathcal{A})$ is the space of anomaly cancellation data. This *p*-groupoid carries a bundle of invertible n+1D TQFTs (fibre is $Q // \Omega^{n-p}\mathcal{A}$). But invertible TQFTs are classified by $\mathcal{V}^{\times} = I\mathbb{C}^{\times}$. By Tannakian duality, Q is recovered from this bundle. Physically, the TQFT is the sigma model with target = X and Lagrangian = [the class in $I\mathbb{C}^{\times}(X)]$.

Theorem: For any cpt ss sym mon \mathcal{W}^{n+1} , set $G = \operatorname{Gal}(\mathcal{V}/\mathcal{W})$. The *n*+1D TQFTs valued in \mathcal{W} are canonically classified by:

- a finite homotopy p-type X
- an action on X by G
- ▶ a *G*-equivariant $I\mathbb{C}^{\times}$ -valued class on *X* of degree n+1.

Lan–Kong–Wen / Surgery theory III

Suppose n = 2p+2 is even. Then our n+1D TQFT Q is canonically the global sections of a bundle over $X = \text{Spec}(\Omega^{n-p}A)$ of TQFTs with operators only *p*-dimensional operators. More precisely, for each $x \in X$, let Q_x be the fibre, and A_x its operators. Then $\pi_k A_x = 0$ except for $\pi_{p+1} A_x$.

Theorem: Suppose that $p \ge 1$ (i.e. $n+1 \ge 5$).

- ► Although typically π_kC is just a set, A_x := π_{p+1}A_x is an abelian group.
- A_x is recovered from A_x together with a class in (Iℂ[×])^{2p+2}(K(A_x, p + 2)), the set of symmetric (p even) or antisymmetric (p odd) forms on A_x.
- This form gives the S-matrix, which is necessarily nondegenerate.

ENO / Postnikov extension theory I

What is the overall structure of \mathcal{V}^n ? What is the absolute Galois group $\operatorname{Gal}_n := \operatorname{Aut}(\mathcal{V}^n)$?

The identity component is $\Sigma \Omega \mathcal{V}^n = \Sigma \mathcal{V}^{n-1}$. Its objects are those TQFTs which admit a topological boundary condition.

Proposition (cf JF–Yu): $\pi_0 \mathcal{V}^n$ is an abelian group.

Corollary: \mathcal{V}^n is a $\pi_0 \mathcal{V}^n$ -graded extension of $\Sigma \Omega \mathcal{V}^n = \Sigma \mathcal{V}^{n-1}$.

Thus we can build \mathcal{V}^n by induction if we know \mathcal{V}^{n-1} , $\pi_0 \mathcal{V}^n$, and the Postnikov aka ENO extension class

$$\pi_0\mathcal{V}^n o (\Sigma^2\mathcal{V}^{n-1})^{ imes}.$$

LHS is concentrated in π_0 . RHS = $(I\mathbb{C}^{\times})^{n+1}$ except for π_0 and π_1 .

ENO / Postnikov extension theory II

Moreover: \mathcal{V}^n is universal $\Leftrightarrow \pi_0 \mathcal{V}^n$ represents the presheaf

$$A \mapsto \pi_0 \operatorname{hom}(A, (\Sigma^2 \mathcal{V}^{n-1})^{\times}), \quad A \in \operatorname{ABGP}.$$

Why is this representable? Use $\Sigma^2 \mathcal{V}^{n-1} \approx (I\mathbb{C}^{\times})^{n+1}$ and various LESs to show the required exactness.

Corollary: \mathcal{V}^n exists.

Proposition: The same computation produces an exact sequence

$$\mathsf{Inv}(\Sigma\mathcal{V}^{n-1}) \to \widehat{\pi_n\mathbb{S}} \to \pi_0\mathcal{V}^n \to \mathsf{Inv}(\Sigma^2\mathcal{V}^{n-1}) \to \widehat{\pi_{n+1}\mathbb{S}}$$

where Inv(-) = iso classes of invertible objects. The maps to $\pi_{\bullet}\mathbb{S}$ record the partition function of the invertible TQFT.

Which invertible TQFTs are anomalies? I

$$\mathsf{Inv}(\Sigma\mathcal{V}^{n-1}) \to \widehat{\pi_n \mathbb{S}} \to \pi_0 \mathcal{V}^n \to \mathsf{Inv}(\Sigma^2 \mathcal{V}^{n-1}) \to \widehat{\pi_{n+1} \mathbb{S}}$$

Unpacking gives:

 $Inv(\Sigma V^n) = invertible n+1D TQFTs$ which admit a topological boundary condition

= anomalous *n*D TQFTs modulo "remember only the anomaly"

$$Inv(\Sigma^{2}V^{n-1}) = invertible \ n+1D \ TQFTs with a connected component of topological boundary conditions = anomalous \ nD \ TQFTs modulo top'l interfaces$$

Corollary:
$$Inv(\Sigma^2 \mathcal{V}^{n-1}) \twoheadrightarrow Inv(\Sigma \mathcal{V}^n) \hookrightarrow \widehat{\pi_{n+1}\mathbb{S}}.$$

Which invertible TQFTs are anomalies? II

$$\cdots \rightarrow \widehat{\pi_n \mathbb{S}} \rightarrow \pi_0 \mathcal{V}^n \rightarrow \mathsf{Inv}(\Sigma^2 \mathcal{V}^{n-1}) \rightarrow \ldots$$

When n = 3, $\Sigma^2 \mathcal{V}^1 \cong \operatorname{FusCat}$ and $\Sigma^2 \mathcal{V}^2 \cong \operatorname{BrFusCat}$, so:

$$\mathsf{Inv}(\Sigma^2\mathcal{V}^1) = 0, \quad \pi_3\mathbb{S} = \mathbb{Z}/24, \quad \mathsf{Inv}(\Sigma^2\mathcal{V}^2) = q\mathsf{Witt}, \quad \pi_4\mathbb{S} = 0,$$

where qWitt is the quantum Witt group of slightly-degenerate braided fusion categories studied by Davydov–Nikshych–Ostrik, and so $\pi_0 \mathcal{V}^3 = (\mathbb{Z}/24)$.qWitt. This recovers (and was inspired by) a construction due to Freed–Scheimbauer–Teleman.

When $n \ge 4$, the method of Lan-Kong-Wen applies just as well to anomalous nD TQFTs as to absolute ones. Every even-dimensional anomalous TQFT is a sigma model, and hence nonanomalous. I.e. when n is odd,

$$\operatorname{Inv}(\Sigma^2 \mathcal{V}^{n-1}) \xrightarrow{0} \widehat{\pi_n \mathbb{S}}.$$

Which invertible TQFTs are anomalies? III

Take n > 4 even, Q an anomalous n-1D TQFT, and surger it to one with only middle-dim operators, classified by abelian group A and an $(anti)^{n/2}$ symmetric form. This has a topological boundary condition iff A admits a Lagrangian subgroup.

Corollary:

- ▶ When n = 4k+2, $Inv(\Sigma^2 \mathcal{V}^{n-1}) \cong \mathbb{Z}/2$. The map $Inv(\Sigma^2 \mathcal{V}^{n-1}) \to \widehat{\pi_n \mathbb{S}}$ selects the Arf–Kervaire invariant.
- When n = 4k ≥ 8, Inv(Σ²Vⁿ⁻¹) ≅ Witt is the (classical) Witt group of abelian groups with a symmetric bilinear form. Since every symmetric bilinear form admits a quadratic refinement, the map Inv(Σ²Vⁿ⁻¹) → π_nS vanishes.

Corollary: The only invertible TQFTs which arise as anomalies of topological theories are (trivial and) Arf–Kervaire invariants.

The absolute Galois group

The ∞ -categorical absolute Galois group is $\operatorname{Gal} := \operatorname{Aut}(\mathcal{V}^{\bullet})$. Since \mathcal{V}^n is a graded extension of $\Sigma \mathcal{V}^{n-1}$, find $\pi_n \operatorname{Gal} = \widehat{\pi_0 \mathcal{V}^n}$. In other words, $\pi_4 \operatorname{Gal} = \widehat{\operatorname{qWitt}}$ and, for k > 1,

The right-hand column is almost *L*-theory. As such, Gal is almost $PL = \bigcup PL(n) \cong$ fibre($\mathbb{S} \to L$), where PL(n) = piecewise-linear automorphisms of \mathbb{R}^n . **Remark (Lurie):** $PL(n) = Aut(Bord_n^{fr})$.

There's also something funny about $\pi_0 \text{Gal} \stackrel{?}{=} \text{Gal}(\mathbb{C}/\mathbb{R}) \cong \mathbb{Z}/2$ versus $\pi_0 \text{PL} = \pi_0 \text{O} = \mathbb{Z}/2$. But that's a story for another day...

References and acknowledgements

My story is based on to-be-written joint work with David Reutter. It also draws on ideas from and conversations with Davide Gaiotto, Mike Hopkins, and Matthew Yu. Inspiration came from analyzing constructions of Lan-Kong-Wen and Freed-Scheimbauer-Teleman.

Some pieces of the story can be found in my older papers:
1507.06297 Spin, statistics, orientations, unitarity. AGT.
2010.07950 Fusion 2-categories with no line operators are grouplike. With M. Yu. Bull. Aust. Math. Soc.
2003.06663 On the classification of topological orders. CMP.
2104.04534 Topological orders in (4+1)-dimensions. With M. Yu.

