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1 Lecture 1: 2023 May 1

Three things we want from the talks:

1. What is a factorization algebra?

2. Relate factorization algebras to field theories?

3. Be curious and learn more!

Rough schedule for now:

1. Physical (field theories) motivation

2. Topological FT

3. Functorial things

1



4. Holomorphic FT

5. Applications/Current Work

Goal: What are factorization algebras and how do we find them in nature?

1.1 Classical Story

Let’s assume that we have some container X (a box, manifold, etc.) and that we have a particle running
around in X. Mathematically, this is a path [0, 1] → X. The particle can’t just do anything ; it has to be
constrained by at least the laws of motion. Intiuitively, we may have:

� The particle is lazy, i.e., it only takes least energy paths;

� X = R2 maybe the particle only takes straight lines

� X = S2 may only move in great circles

� If X is a Riemannian manifold, maybe the particle only moves in geodesics.

Physical constraints are called “equations of motion” or Euler-Lagrange (EL) equations and presented as a
PDE. But PDEs are scary! So instead we equivalently encode the PDE as a map

S : Map(I,X)→ R

called the “action functional.”
The allowable paths are a subset

EL ⊆ Map(I,X)

where
EL := {f : I → X | (dS)(f) = 0}.

Note that the set EL is also called the critical locus of S.
More generally, instead of looking for maps I → X, we might want to think of paths as parametrized by

a space N . In particular, we may look for maps

N × I → X

which we call spacetime. Note we also define M := N × I.

Definition 1.1.1. A classical field theory is a:

1. Spacetime M ;

2. A space of fields Map(M,X);

3. An action functional S : Map(M,X)→ R .

Remark 1.1.2. We’ll be revisiting and amending this definition as we go!

Definition 1.1.3. The dimension of the field theory is the dimension of M .

Example 1.1.4 (Classical Mechanics, Massless Free Theory). Let I = [a, b] be a time interval and let our
fields be Map([a, b],Rn) for some n ∈ N, n ≥ 1. Our action function is then

S(f) :=

∫ b

a

〈
f(t),

∂2

∂ t2
f(t)

〉
dt.

The critical locus is then
EL = {straight lines}.

This example can be generalized to Riemannian manifolds.
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Remark 1.1.5. We want to think of our spacetimeM as a compact manifold and we wantX to be something
like a manifold. The action functional S needs to be something local. What do we mean? Well: S is local
when it can be written as an integral over M of some polynomial in the fields and their derivatives.

Example 1.1.6 (Gauge Theory). Let G be a Lie group and let M be a spacetime. Denote this theory by
GaugeG(M). The fields are Bun∇G(M) (principal G-bundles with connection). If we drop the connection
condition we get that

Map(M,BG) ∼= BunG(M)

(note: BG is not necessarily a manifold but it’s close enough). There’s a way to modify this to get a
connection classifying space B∇G and produce

Map(M,B∇G) = Bun∇G M.

Our action functional (actional — suggestion from Geoff) is given by the Yang Mills equation

S(A) =
−1
2

∫
M

tr(dA ∧ ∗dA).

Remark 1.1.7. Our definition of saying that fields are mapping spaces Map(M,X) might not always be
true. When it is true, the field theory is called a sigma model.

Question from Hank: How important is it for the actional to be positive definite? Araminta will get back
to us!

1.2 Quantization

Answer the important motivating questions. Say we have a box with a spider in it. We can ask:

� Can the spider get out?

� How fast is the spider?

� Where is the spider?

� Is the box open?

� Are there holes?

The first question is a questio nthat we need to know everything about the field theory to know; the second
and third questions are local geometric questions’; and the fourth and fifth questions are global questionas
about the topology of X. These are measurements we can make on a field theory. In quantum field theory
we cannot answer these all. This is the Heisenberg Uncertainty Principle. This says the following:

Definition 1.2.1 (Heisenbewrg Uncertainty Principle). In Quantum Field Theory (QFT) we cannot pre-
cisely know the position and momentum of the particle at the same time.

Goal: mathematicatize this principle!

Definition 1.2.2. Given a classical field theory

S : Map(M,X)→ R

the classical observables are the real functions1 on the critical locus of S, i.e., when EL ⊆ Map(M,X),

Obscl = OEL

1This is purposefully vague at the moment.
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Remark 1.2.3. The classical observables Obscl is a commutative algebra via pointwise multiplication, for
f, g : EL→ R,

(fg)(λ) = f(λ)g(λ).

This fails in QFT!

In QFT let’s say we have two observables f, g ∈ Obs. We want to get an observable fg which is the
product of fg. The trick is to do the measurements at distinct times. So: If we do f and g on different
disjoint time intervals we get a product of observables dependent on disjoint intervals. More generally, if
M = N × I then we look to do the observations f and g on disjoint open discs in M .

In particular: the set of quantum observables Obsq should have this weird alg structure.

1.3 Factorization Algebra

Definition 1.3.1 (Factorization Algebra). Let M be a manifold. A factorization algebra on M valued in
the category of chain complexes is a functor

F : Open(M)→ Ch

together with isomorphisms

F
(
U
∐

V
)
∼= F(U)⊗F(V )

if U, V are disjoint opens which satisfying a Weiss topology cosheaf condition2.

What data do we get from a factorization algebra? Well:

� Given a disjoint family of open discs
∐k

i=1 Di →M we get an isomorphism

F

(
k∐

i=1

Di

)
∼=

k⊗
i=1

F(Di)

� If we have a n open disc D in M and disjoint open discs
∐k

i=1 Di in D, then we have a map

k⊗
i=1

F(Di) ∼= F

(
k∐

i=1

Di

)
→ F(D)

which is our “multiplication” in the factorization algebra.

Theorem 1.3.2 (Costello = Gwilliam). The quantum observables Obsq of a FT has the structure of a
factorization algebra on the spacetime.

The main take-away is that we should think of QFTs as factorization algebras.
Given a factorization algebra Obsq : Open(M)→ Ch and an open U ⊆M we get a chain complex

Obsq(U) = measurements we can take on U

which are local observables on U .
Question: Are there global observables?
Since Obsq is a cosheaf we can take its global sections.

Definition 1.3.3. Let F be a factorization algebra on M . The factorization homology of M with coefficients
in F is the global sections ∫

M

F := F(M)

2This is a local-to-global condition.
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Remark 1.3.4 (ACHTUNG). The integral symbol above is NOT AN END OR COEND OR INTE-
GRAL IN THE USUAL SENSE. It just means factorization algebra.

A question about what the dimension of a FT means from Pedro: The dimension tells us how many
directions in which the particle can moove around.

A question: How do we quantize a classical algebra into a quantum factorization algebra. This is
something we’ll discuss in the week, but the trick is that we have to take commutative algebras (the classical
commutative algebras) and turn them into functors. Factorization algebras on R are like associative algebras.

2 Lecture 2: 2023 May 2

How to do Question 1.6 from the problem session. Recall that a classical field theory is

Obscl = OEL .

Question 1.6 asked us to show that Obscl form a factorization algbera on M . More generally, we should
show that if A is a commutative algebra then A induces a factorization algebra on M .

Definition 2.0.1. A factorization algebra on M is a Weiss cosheaf on M , F : Open(M) → Ch, and has
equivalences

F
(
U
∐

V
)
∼= F(U)⊗F(V ).

Assume that A is a commutative algebra in Ch. Define the constant copresheaf F1 : Open(M)→ Ch by

U 7→ A, incl : U → V 7→ idA .

This then induces a functor F2 → Open(M) → Com(Ch). Coseafify F2 in the Weiss (Grothendieck)
topology to get a cosheaf F factoring as

F : Open(M)→ Com(Ch)→ Ch .

To show that this gives a factorization algebra, because in Com(Ch) the coproduct is tensor products, we
get that

F
(
U
∐

V
)
∼= F(U)

∐
F(V ) = F(U)⊗F(V ).

A question: does this work because something about the Weiss topology allow us to know that our colimits
and limits work out properly.

2.1 Lecture 2

Recall that quantum field theory to have quantum observables as a factorization algebra on M . Today we
will talk about topological field theories.

Remark 2.1.1. Intuition: A field theory is topological if it desn’t depend on metrics.Recall that the
actional S : Map(M,X) → R can use metrics. If if it doesn’t use metrics, it is essentially topological in
nature.

Question: How does being topological affect Obs. Well: Consider that we have to describe Obs(Br(0))
for all r > 0 for r ∈ R. Then since we have a chain complex Obs(Br(0)) ∈ Ch for any r ∈ R, so if r < s we
get an inclusion

Obs(Br(0))→ Obs(Bs(0))

Because our field theory is topological, this must be an equivalence. Similarly, if we have any other ball
Bs(1) for s, r > 0 and s, r ∈ R then there is also an equivalence

Obs(Br(0))→ Obs(Bs(1))

because the difference between the balls is in this case a metric issue. This warrants a definition which allows
us to capture locally constant cosheaves.
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Definition 2.1.2. A factorization algebra F is locally constant if there is an isomorphism of complexes

F(D1 ⊆ D2) : F(D1)
∼=−→ F(D2)

whenever D1 ⊆ D2 for D1, D2 open discs in M .

Definition 2.1.3. A field theory is topological if the quantum observables are locally constant.

Example 2.1.4. Let M = R and consider a topological QFT with observables Obsq. Then the functor
Obsq sends open sets to the category of chain complexes. We claim that Obsq is determined by Obsq(R).
Define

Obsq(R) := A.

Consider two disjoint opens balls U, V ⊆ R and assume that U
∐

V ⊆ W for another open ball W ⊆ R.
Then we get a commuting diagram

Obsq (U
∐

V )
∼= Obsq(U)⊗Obsq(V ) Obsq(W )

A⊗A A⊗A A

∼= ∼= ∼=

and because we cannot slide U past V while keeping the opens disjoint, the multiplication is noncommutative.
Thus locally constant factorization algebras are noncommutative algebras.

Example 2.1.5. Consider M = R∞ and let F be a factorization algebra on R∞ which is locally constant.
By playing the exact same game as in the prior example and setting A := F(R∞) we get a multiplication
map

µ : A⊗A→ A.

Because we can slide open balls around because of the infinite dimensions of movement and freedom in the
literal space R∞, the multiplication law is (coherently!) commutative.

We showed that:

Spacetime Locally constant factorization algebras

R Algebras

R2 ?
...

...
R∞ Commutative algebras

Example 2.1.6. Consider in R2 that we have once again we have for a locally constant factorization
algebra we cannot move around stuff. We get E2-algebras for locally constat factorization algebras because
our algebras are only homotopy commutative — the trick is that the multiplication map

A⊗A ∼= Obsq(U)⊗Obsq(V )→ A = Obsq(W )

holds for any two disjoint opens and any open containing the disjoints. Basically you can pick up monodromy
of S1 as you run around and don’t get strict commutativity.

Now:

Spacetime Locally constant factorization algebras

R Algebras

R2 E2-algebras
...

...
R∞ Commutative algebras

We will extrapolate and get to En-algebras and describe them as locally constant factorization algebras on
Rn. To do this we will need operads!
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2.2 Operads

Let Finbij be the category of finite sets and bijections.

Definition 2.2.1. The category of symmetric sequences is the category

SSeq :=
[
Finbij,Spaces

]
.

The category SSeq is a monoidal category. How? Well assume that R,S ∈ SSeq. Then define the
monoidal product R ◦ S by, if [n] is a fixed set of n-elements We will copy

this from the
notes later.(R ◦ S)[n] :=

Note that the argument involving [n] is a skeletal argument involving Finbij, as Fin has one isomorphism
class of objects for each n ∈ N.

The unit of the monoidal structure is Otriv sends a finite set B to the unit 1Spaces if |B| = 1 and ∗
otherwise.

Definition 2.2.2. An operad is a monoidal object in SSeq.

If O is an operad for every k ∈ N we get

O(k) ∈ Spaces

as well as an operation
(O ◦O)(k)→ O(k)

Definition 2.2.3 (Also an Example). The En-operad is the SSeq

En(k) := Confk(Rn)

where
Confk(Rn) := {X ⊆ (Rn)k | X has k distinct points in Rn}.

Note that there is a map
En ◦En → En

built as follows. View a point in Rn as a little ε-small open disc with centre at the given point. Then from
embedding disjoint unions of discs into bigger discs we can manipulate our operations.

Definition 2.2.4. If O is an operad then an O-algebra in a symmetric monoidal closed category C is an
object V ∈ C together with morphisms (note the adjoint transpose below)

O(k)→ C (V ⊗k, V )

O(k)⊗ V ⊗k → V

for all k ∈ N.

Theorem 2.2.5 (Lurie; cf. Higher Algebra). There is an equivalence of categories

En Alg ≃ FactAlg(Rn)l.c.

where En Alg is the category of En-algebras and FactAlg(Rn)l.c. si the category of locally constant factor-
ization algebras.
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The examples show that this works for E1 and E∞. The idea is that ther eis an isomorphism

Confk(Rn) ≃ Embfr

(∐
k

Rn,Rn

)
.

Tomorrow: Factorization Homology. If F is a factorization algebra on M , we should think of∫
M

F = F(M).

So if F is locally constant, how do we define factorization homology of En-algebras? Basically, how can we
pass through the equivalence of categories to define and make sense of statements like∫

M

F =

∫
M

AF?

3 Lecture 3: 2023 May 3

3.1 Foactroization Homology in the En-language

Recall:

Definition 3.1.1. A factorization algebra on M is a Weiss cosheaf on M , F, together with isomorphisms

F
(
U
∐

V
)
∼= F(U)⊗F(V )

for disjoint opens U, V ⊆M .

Definition 3.1.2. The factorization homology of a factorization algebra F on M is∫
M

F := F(M).

Yesterday we showed that for any TQFT the locally constant facorization algebras correspond to En-
algebras on M = Rn. Today we want to unerstand

∫
M

A for A ∈ En Alg.

Definition 3.1.3. Let Mfldn be the ∞-category n-dmension manifolds (without boundary niceness) to-
gether with smooth embeddings.

Remark 3.1.4 (ACHTUNG). Today our lecture is going to be in a derived setting, so be particularly
careful. In particular the category Ch is now used to mean the derived ∞-category D(Ch).

Remark 3.1.5. For now, an ∞-category C is a category such that C (X,Y ) is a topological space for all
objects X,Y .

Example 3.1.6. Let X,Y ∈Mfldn. Then

Mfldn(X,Y ) = SEmb(X,Y )

and the space of smooth embeddings carries a topology.

Remark 3.1.7. There is a framed version of the ∞-category Mfldn. We denote this as Mfldfr
n .

Definition 3.1.8. Let Discn ↪→Mfldn be the full subcategory of n-manifolds isomorphic to disjoint unions
of Euclidean spaces ∐

k

Rn

and similarly for the framed version.
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This category of discs is symmetric monoidal under disjoint union; its unit is the manifold of every
dimension: ∅.

Let M ∈Mfldn. Take the overcategory (slice category) Discn/M of smooth embeddings∐
k

Rn →M.

Morphisms in this category are diagrams

U V

M

φ

where φ is some chosen isotopy. There is also a forgetful functor from the slice category to the total categorry
which sends an object U →M to U .

Definition 3.1.9. An n-disc algera is a symmetric monoidal functor

A : Discn → Ch

Let Algn(Ch) donote the category n-disc algebras.
We have diagrams of categories

FactAlg(Rn)←↩ En Alg ↪→ Algn(Ch)

where the left arrow includes locally constant factorization algebras and the right arrow picks out framed
disc algebras. Now since

SEmbfr

(∐
k

Rn,Rn

)
∼= Confk(Rn).

I missed some things :(

Definition 3.1.10. Let M be an n-manifold and let A be an n-disc algebra in Ch. The factorization
homology of M with coefficients in A is the diagram∫

M

A = colim
(
Discn/M → Discn

A−→ Ch
)
.

We now can ask if factorization homology is in fact in some way a homology theory?
Well a usual homology theory H0(M ;A) satisfies the Eilenberg-STeenrod axioms. In particular, if we

write
M = U

∐
W

V

the Eiulenberg-Steenrod axioms tell us how to compute M via excision.

Definition 3.1.11. A symmetric monoidal functor

Mfldn → Ch

satisfies ⊗-exicision if given a cullor gluing

M ≃ U
∐
V×R

U ′

there is ane equivalence

T (M) ≃ T (U)
L
⊗T (V×R) T (U

′).
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Example 3.1.12. We saw an example of excision for manifolds with boundary where a person god excised
from their body by identifying the neck as a celinder V × R separating/gluing the head to the body.

Definition 3.1.13. The category of homology theories of n-manifolds is the full subcategory

H (Mfldn;Ch) ↪→ SMFunc(Mfldn,Ch)

of symmetric monoidal functors satisfying ⊗-excision.

Theorem 3.1.14 (Ayala-Francis). There is an equivalence of categories

H (Mfldn;Ch) ≃ Algn(Ch)

Sketch. The functor from homology to algebras is evaluation on Rn while the functor from algebras to
homologies is the global sections with coefficients in A functor.

Given M , is H•(M ;R) =
∫
M

A for some factorization algebra? This answer is yes, but factorization
homology is not a generic homology theory for technical reasons.

3.2 Compute Things!

Example 3.2.1. Let M = Rn. Then∫
Rn

A = colim
(
Discn/Rn → Discn

A−→ Ch
)
.

Now, since Discn/Rn has a terminal object (which is the identity morphism Rn = Rn), the colimit has the
value ∫

Rn

A = (A ◦ Forget)(Rn idRn−−−→ Rn) = A(Rn).

Remark 3.2.2. If F is a factorization algebra on M and Rn ⊆M then∫
M

F = Γ(M,F)

and ∫
Rn

F = Γ(Rn,F) = F(Rn).

Example 3.2.3. Let M =
∐

k R
n. Then∫
M

A = colim
(
Discn/M → Discn

A−→ Ch
)

and since the slice category has terminal object id : M →M , we have∫
M

(A) = (A ◦ Forget)(idM : M →M) = A(M).

Since M =
∐

k R
n we further have that

A(M) ≃ ⊗kA(Rn).

Example 3.2.4. Let M = S1 and assume that A is a framed disc algebra so A is an E1-algebra, i.e., A is
an associative algebra. Consider that ∫

M

A = A(M).
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However, we compute now weith excision. Consider that we can write S1 as the union of the oepn northern
hemisphere U and the open lower hemisphere U ′ glued along the overlaps. If V = S0, we can write these
overlaps as a space homeomorphic to V × R. Note also that everything in sight is framed. Now∫

S1
A = A(S1) ≃

∫
U

A⊗∫
V ×R A

∫
U ′

A ≃ A(R)⊗S0 ×R A(R).

Since we have to keep track of all orientations and one of the copies of R in S0×R points the other direction,
we get

A(R)⊗S0 ×R A(R) ≃ A(R)⊗A(R)op⊗A(R) A(R)

so ∫
S1
A = A(S1) = A(R)⊗A(R)op⊗A(R) A(R)

which is the Hochshild homology of A.

Recall that we have a forgetful functor algn(Ch)→ Ch given by A 7→ A(Rn).

Definition 3.2.5. The free n-disc algebra is the left adjoint ot the forgetchul functor and is a functor

Freen : Ch→ Algn(Ch).

Example 3.2.6. Let V ∈ Ch. Then Freen(V ) sends
∐

k R
n to

⊕
m≥0

C0

(
SEmb

(∐
m

Rn,
∐
k

Rn

))
⊗Sm

V ⊗m

where Sm is the symmetric group on m letters. If we’re framed we find that

Freefrn(V )(Rn) =
⊕
m≥0

C0 (Confm Rn)⊗Sm
V ⊗m.

Proposition 3.2.7. If M is a framed n-manifold,∫
M

Freefrn(V ) =
⊕
m≥0

C0(Confm(M))⊗Sm
V ⊗m.

Remark 3.2.8. Use this to compute harder En-algebra A homology by finding a free En-algebra resolution
of A. This works well because of the Barr-Beck Theorem.

Start of the proof. Consider, if U =
∐

k R
n, that

Freen(V )(U) =
⊕
m≥0

C0 (Confm(Rn))⊗Sm V ⊗m
)⊗k ≃

⊕
m≥0

C0 (Confm(U))⊗Sm V ⊗m.

Thus
∫
U
Freefrn V works. Now∫

M

Freefrn(V ) = colim
U∈Discn/M

⊕
m≥0

C0(Confm U)⊗ V ⊗m

≃
⊕
m≥0

colim
U∈Discn/M

C0(ConfmU)⊗ V ⊗m.

One shows that
colim

U∈Discn/M
C0(ConfmU)⊗ V ⊗m ≃ C0(Confm(M)).

Remark: have to show that can compute this colimit over ordinary cats and ∞-cats.
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If A = Obsq for a QFT on M then
∫
M

Obsq tells you the global measurements. Obsq(U) tells you
measurements on U .

Will asked a question about where is the cosheaf condition in this story? Remember that a factorization
algebra was a functor

F : Open(Rn)→ Ch

and an n-disc algebra is a functor
A : Discn → Ch .

The Weiss cosheaf condition omes down to saying that F is determined by F(
∐

k R
n). In particular, F (U)

is determined by the Weiss cosheaf condition and computing

A(U) ≃
∫
U

A

which by construction is determined by A(
∐

k R
n).

4 Lecture 4: 2023 May 4

4.1 Functorial Day

Remark 4.1.1. Observables, in the way we’ve been thinking of them, Obs are sometimes called “pout
observalbes.”

Observables Costello-Gwilliam Topological (Rn)

Point Observables Factorization algebra in Ch Z(Sn−1): En-algebra

Line Operators Guess: Factorization alg in Cat Z(Sn−2): En−2-algebra in Cat
Approx: Modules over

∫
Sn−2 ×R2 Obs

Recall that if F is a locally constant factorization algebra on Rn then the En-aglerba is F(Dn) for some
Dn open. Now if we have an open in R2 with two disjoint discs then by pulling the two discs back and
embedding the two discs back in R3 we arrive at a 2-manifold with boundary given by the two discs. This
is our bordism.

Note that the multiplicative structure of F(Dn) is determined by the linking sphere Z(Sn−1).

Example 4.1.2 (Wilson Loop Operator). Let G be a Lie group G and consider the Gauge theory of rG
and M . We have

Fields = Bun∇
GM

Given a lop C in M we get a map
Bun∇

GM → R

by taking the trace of holonomy around C:

(P,A) ∈ Bun∇
GM, HolC(P,A) : g→ g .

Set
γ := trace(HolC(P,A)).

Note that γ is a function on fields. Now since

Obs = Map(EL,R)

but Obs don’t know about dependence on C.
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In general, maps
Fields→ R

which depend on lines/curves in spacetime are called line operators.
What structure should line operators have?
We can stack lines in the sense that if we have n line segments we can glue them along their endpoints

to make one big line. The main insight is that there should be a category of line operators! Here is the
category LineOp:

� Objects: Line operators, i.e., pairs (L, ρ) of a line L in M and the corresponding operator ρ : Fields→
R.

� Morphisms: We define
LineOp

(
(L, ρ), (L′, ρ′)

)
to be the set of point observables that can be placed between L and L′. We set LineOp

(
(L, ρ), (L′, ρ′)

)
:=

∅ if the lines L and L′ are nowhere near each other.

� Composition: Stacking three lines.

� Identities: Added formally.

We get an algebraic structure as follows: by collision of lines. If our field theory is topological of dimension
n ≥ 2, the linking spheres are now Sn−2. This gives LineOp the structure of an En−1-monoidal category.

We guess this pattern continues:

Point En in Ch
Lines En−1 in Cat

Surfaces En−2 in ???
...

...
dim k manifolds En−k in ???

If X is an oriented manifold, let X̄ denote the manifold X with reveresed orientation.

Definition 4.1.3. Let Cob(n) the category with:

� (n− 1) dimensional closed oriented manifolds;

� A morphism M → N is an n-dimensional oriented manifold W with ∂W = M
∐

N .

� Composition: Gluing tubes along shared boundaries.

Definition 4.1.4 (Atiyah-Segal). An n-dimensional TQFT is a symmetric monoidal functor

Z : Cob(n)
∐
→ Ch⊗ .

We think of Z(Sn−1) as the point observables of the field theory.

Definition 4.1.5. An En-algebra is the data of

En(k)⊗ Z(Sn−1)⊗k → Z(Sn−1)

where
En(k) = Confk(Rn)

Example 4.1.6. If k = 2 and n = 2 then these come from bordisms of pairs of pants.

Remark 4.1.7. Atiyah-Segal’s definition considers all n-manifolds at once rather than a single spacetime.
If we want to specify a spacetime M , there is a version with cobordisms embedded inside M .
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Definition 4.1.8. If V is a (real) vector space (or chain complex) we write

V ∨ := C (V,R).

Let Z be an n-dimensional TQFT and let K ne an n−1 dimensional oriented manifold. Then the cylinder
K × [0, 1] gives a morphism in Cob(n) in a few ways:

� As a map K → K (which is the “horizontal” cylinder with faces K pointing left and right).

� As a map K
∐

K̄ → ∅ by bending the cylinder to have the two faces at the left (the domain) side.
This is a left macaroni and describes

ev : Z(K)⊗ Z(K̄)∨ → R .

� By facing the macaroni to the right we get a map ∅→ K̄
∐

K and hence induce

coev : R→ Z(K)∨ ⊗ Z(K).

Remark 4.1.9. Recall that a pairing V ⊗ W → k for a field k is perfect if it induces an isomorphism
V →W∨.

Proposition 4.1.10. The vector space Z(M) is always finite dimensional and the pairing ev is perfect.

4.2 Classification (Benefit of the Funcorial Setting)

Example 4.2.1. Dimension 1 TQFTs:
Z : Cob(1)→ Ch .

Let P be a single point ald net Q = P̄ . Then Z(P )∨ = Z(Q). In general, an object in Cob(1) is

M :=

∐
S+

P

∐∐
S−

Q


of points of positive and negative orientation and

Z(M) =

⊗
S+

V (P )

⊗
⊗

S−

Z(P )∨

 .

Get a perfect pairing
Z(P )⊗ Z(P )∨ → R

whose coevaluation is a morphism

R→ Z(P )⊗ Z(P )∨ ∼= End(Z(P )).

Now note that S1 in Cob(1) is a map ∅ → ∅ and so we get that Z(S1) determines a number λ ∈ R. This
number λ coming from Z(S1) is the dimension Z(P ) and the composition

R End(Z(P )) Rcoev ev

gives the multiplication by λ map. The take-away is that Z(S1) is the dimension invariant.

Remark 4.2.2. Every 1d TQFT determines a funite dimensional vector space Z(P ) and conversely every
finite dimensional vector space V determines a 1d TQFT.
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Example 4.2.3. Two dimensional TQFTS:

Z : Cob(2)→ Ch

and Z(S1) is an E2-algebra. Because our morphisms are pairs of pants, these pants give us our E2-algebra
structure. The left-facing pill cap allows us to realize B1(0, 0) : S1 → ∅ in Cob(2) and the right-facing pill
cap gives a map ∅→ S1; the map R→ Z(S1) gives the identity of the algebra.

Now consider the pair of paints with two S1-boundaries on the domain side and one S1 on the codomain
side and place pill caps on on each part of the pants, we get a space homotopic to S2. Putting a cap on only
one leg of the pants gives a cylinder and the macaronis give a perfect pairing Z(S1)⊗ Z(S1)→ R.

Definition 4.2.4. A commutative Frobenius R-algebra is an R-algebra A with a linear map A → R and a
nondegenerate pairing A⊗A→ R.

Consequently we see that a 2d TQFT determines a commutative Frobeneius algebra through Z(S1).
Consequently we induce:

Theorem 4.2.5. Three is an equivalence of categories

2dTQFTs ≃ CFrobAlg.

Tomorrow: Try higher dimensions! Classify 3d and bigger TQFTs and get version of TQFT that accounts
for line operators, surface operators, and so on. Also: holomorphic things and some fun recent stuff!

5 Lecture 5: 2023 May 5, Revenge of the Fifth

5.1 Review

Yesterday we say that for a TQFT over Rn, observables are En-algebras and the functorial version are
functors Z : Cob(3) → Vect. We classified them in dimensions 1 and 2 and today we will study higher
dimensions. In dimension 3, objects of Cob(3) are surfaces like many-holed torii. Given such a surface we
want to think of such a surface as the gluing of torii along some closed disk. So here is what we want:

A version of Cob(n) which knows about (n− 2)-maniflds and a version of

Z : Cob(n)→ C

that assigns an (En-monoidal) (∞, 1)-category to Sn−2 (like line operators). Solution: Use higher categories!

Definition 5.1.1. A strict n-category is a category K enriched over (n− 1)-categories.

Remark 5.1.2. The enrichement definition implies in particular that K (X,Y ) is an (n− 1)-category.

Example 5.1.3. Let’s consider the category VectR2 :

� 0-cells: R-linear categories.

� Morphism categories: VectR2 (E,D) = Funcnice(E,D).

Example 5.1.4. Define Cob2(n) as:

� Objects: Closed oriented manifolds of dimension n− 2;

� Morphism categories: Cob2(n)(M,N) = equivalence classes of cobordisms (and maps between them).

Example 5.1.5. For any n ∈ N define the n-category, Cobn(n) whose objects are closed oriented manifolds
of dimension 0 ... points. But there’s a problem.
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Remark 5.1.6 (ACHTUNG). There are some issues with the strictness we’re asking for! Requiring that
things be bang-on equal to each other is very, very unnatrual — things should only be equal up to a homotopy
and not on the nose.

Our solution is to move to (∞, n)-categories instead of strict n-categories.

Proposition 5.1.7. There is an (∞, n)-category Cobn(n) which does what we want.

Definition 5.1.8. Let C be a symmetric monoidal (∞, n)-category. An extended n-dimensional TQFT is
a symmetric monoidal functor

Z : Cobn(n)→ C .

Remark 5.1.9. Think of Z as an assignment

Object Assignment
n-manifolds Something

(n− 1)-manifolds Some other thing
...

...
pt Some other things

Example 5.1.10. Consider

Object Assignment
n-manifolds C

(n− 1)-manifolds VectC
...

...
pt (∞, n− 1)-categories with a linear over C condition

In this case Z(Sn−2) is a linear category over C and the En−1-monoidal structure comes from pairs of pants.

Here we can also decompose manifolds into smaller and smaller pieces. For instance, we can take a
many-holed torus, pick out a circle, and then further decompose the circle into points. So in particular we
cna decompose n-manifolds down to the level points.

What does this buy us? Well yesterday we say that the value of a point completely determined a value
on a point.

Theorem 5.1.11 (Cobordism Hypothesis; cf. Baez-Dolan, Hopkins-Lurie, Lurie, Grady-Pavlov). Let C be
a symmetric monoidal (∞, n)-category with duals/ Tjem tjere os am eqiova;emce omdiced ny Z 7→ Z(∗)
between

Fun⊗ (Cobn(n),C )
≃−→ C f.d.

where C f.d. is the full sub-(∞, n)-symmetric monoidal category of fully dualizable objects.

Remark 5.1.12. Given Z(∗), what is Z(M)? It is expected that there is a version of factorization homology
for (∞, n)-categories so that ∫

M

Z(∗) = Z(M)

for all manifolds that Z can see. This is due to Ayala-Francis and is called β-factorization homology.

Remark 5.1.13. Could take C to be an appropriate Morita category Moritan−1.

Example 5.1.14. The category Morita1 is an (∞, 2)-category whose 0-cells are E1-algebras, 1-cells are
bimodules for E1-algebras, and 2-cells and higher are morphisms and equivalences between bimodule maps.

16



If we have a symmetric monoidal ∞-functor Z : Cobn(n) → Moritan−1 then Z(∗) is a (special type3

of) En−1-algebra. Thus by the Cobordism Hypothesis, an n-dimensional TQFT with target Moritan−1 is
determined by a (special type of) En−1-algebra.

Before now: field theories as determined by observables giv rise to En-algebras, yet now we have En−1-
algebras. Two questions:

1. How to go from En−1 to En?

2. How to go from Z(∗) to Z(Sn−1)?

5.2 Drinfeld Centres

Yesterday: Drinfeld centres of monoidal categories were braided monoidal categories. In the En-language,

Z (E1 Cat) ≃ E2 Cat .

Moreover, there is a notion of Drinfeld centre for Ek-algebras in (∞, n)-categories.

Theorem 5.2.1 (Deligne Conjecture; Lurie). The En-Drinfeld Centre of an En-category is an En+1-category.

Remark 5.2.2. This answers our first question: to go from En to En+1, use Drinfeld Centres.4

Remark 5.2.3. We have
ZEn

(Z(∗)) = Z(Sn−1).

Example 5.2.4 (Ben-Zvi, Francis, Nadler). If X is a perfect derived stack then

ZEn
(QCoh(X)) ≃ QCoh (L n(X)) .

5.3 Holomorphic Field Theories

Recalll that a continuous function f : C→ C is holomorphic if it is complex differentiable (complex smooth).
We want a notion of what it means to be a holomorphic field theory over spacetime C. Before we say

tha topological field theories give equivalences

Obsq(D1)
≃−→ OPbsq(D2).

Definition 5.3.1. A factorization algebra F on C is holomorphic translation invariant if we have an equiv-
alence

px : F(U)
≃−→ F(τxU)

where τx is a translation of U by a vector x ∈ C such that px is holomorphic in x and commute with the
factorization algebra maps.

Theorem 5.3.2 (Costello-Gwilliam). A holomorphic translation invariant field theory has factorization
algebr aobservables taht are holomorphically translation invariant. Moreover, holomorphically translation
invariant factorization algebras (with an S1-action) determines a vertex algebra.

Definition 5.3.3 (Ben-Zvi, Frenkel; cf. also Borcherds). A vertex algebra over C consists of the following:

� A vector space V over C (the state space);

� A nonzero vector |0⟩ ∈ V (the vacuum vector);

� A linear map T : V → V (the shift operator);

3Related to dualizability.
4Is there a way to go from En to E∞?
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� A linear map y(−, z) : V → End(V )Jz, z−1K (the state-space correspondence);

which satisfy some conditions omitted here.

Remark 5.3.4. The reference [Ben-Zvi, Frenkel] is the standard reference, but the original is due to
Borcherds.

Idea. The main step is

V ∼=
⊕
k

lim−→
r∈N

H• (Fk Br(0))

where Fk is the k-th eigenspace of the S1-action.

Example 5.3.5. If X is a manifold, then DiffX is an associative algebra (which is a 1d FT). If we work with
a 2D FT we instead get chiral differential operators (which are vertex algebras) and looks like an enveloping
algbera U fact(hu) which is the enveloping algebra, turned into a factorization algebra, of the Heisenberg Lie
algebra.

Theorem 5.3.6 (Malikov-Schectman-Vautrb5). Chiral differential operators determin Witten genus (ex-
pected by Worle an Witten). The relation to chromatic homotopy theory via Stolz-Teichner.

The process of understanding a field theory by its observables gives us a process for turning something
physical in nature to something algebraic. This lets us:

� Give a prcise definition of topological field theories

� understand quantization as deformations.

But also, there is:

5.4 Duality

In manifold theory, one of the greatest results is Poincaré duality and we have seen in the exercise nonAbelian
Poincaré duality.

Question: are there duality notions for field theories and their observables?
Cool type of duality for algebras is called Koszul duality.

Definition 5.4.1. If A is an associatiative algebra then the Koszul dual of A is

D(A) =

(
1

L
⊗ 1

)∨

Remark 5.4.2. Note that

D(A) =

(∫
D1

A

)∨

Definition 5.4.3 (Ayala-Francis). Let A be an En-algebra. The Kozul Dual of A is

D(A) =

(∫
Dn

A

)∨

Theorem 5.4.4 (Getzler-Jones, Lurie/Francis). The Kozul dual of an En-algebra is an En-algebra.

Theorem 5.4.5 (Poincaré/Koszul Duality; cf. Ayala-Francis). Given an n-manifold M ,∫
M

A ≃
∫
M+

D(A).

5I am sure there is a typo here, and I apologize.
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The Koszul dual of objservables for a TQFT on Rn has the structure of observables for a TQFT on Rn.
Consequently we can ask is there a dual field theory Y to a field theory X for which

D (ObsX) ≃ ObsY ???

Conjecture 5.4.6 (Costello=Paquette, Costello-Li). Koszul duality for observables corresponds to AdS/CFT
duality.
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