FACTORIZATION ALGEBRAS: DAY 2

ARAMINTA AMABEL

0.1. Exercises Review. The following was on yesterday's problem set:

Question 0.1. Given a field theory with space time M, classical observables are a commutative algebra. Show that classical observables form a factorization algebra on M. In fact, any commutative algebra forms a factorization algebra on M.

Let's go over the solution. Let A be a commutative algebra (say in chain complexes). The constant precosheaf defines a functor

$$F_1: \operatorname{Open}(M) \to \operatorname{Ch}$$

sending every open set to A. We can view this as a precosheaf valued in algebras in chain complexes,

$$F_2: \mathsf{Open}(M) \to \mathsf{Comm}(\mathsf{Ch})$$

We can cosheafify F_2 using the Weiss topology to get a Weiss cosheaf

$$F_3: \operatorname{Open}(M) \to \operatorname{Comm}(\operatorname{Ch}).$$

Since coproducts and tensor products are the same in algebras in chain complexes, we have

 $F_3(U \sqcup V) \simeq F_3(U) \otimes F_3(V).$

Forgetting back down, we have a factorization algebra

$$F_4 \colon \mathsf{Open}(M) \to \mathsf{Ch}$$

The functor F_4 is still a Weiss cosheaf since the forgetful functor

$$Comm(Ch) \rightarrow Ch$$

preserves reflexive coequalizers.

1. TQFTs

Yesterday we talked about how classical observables form a commutative algebra, and quantum observables form a factorization algebra. Recall the definition of a factorization algebra.

Definition 1.1. A factorization algebra on M is a Weiss cosheaf \mathcal{F} on M with equivalence

$$\mathcal{F}(U \sqcup V) \simeq \mathcal{F}(U) \otimes \mathcal{F}(V).$$

Today I want to talk about how this structure behaves when we have a *topological* field theory. Informally, a field theory is topological if it does not depend on a metric. Let's investigate what this means for quantum observables. Let M be our spacetime. Then if our theory is topological the cosheaf

$$\mathsf{Obs}^q \colon \mathsf{Open}(M) \to \mathcal{C}$$

cannot know about measurements of size or distance. For example, consider the value $Obs^q(B_r(0))$ on a ball of radius r. centered at the origin. Since Obs^q does not know about size, it cannot distinguish between balls of different radii. Thus

$$\mathsf{Obs}^q(B_r(0)) \xrightarrow{\sim} \mathsf{Obs}^q(B_{r'}(0))$$

for r < r'. Moreover, it does not know distance from the origin. So if we move $B_r(0)$ around inside $B_{r'}(0)$, that will not effect the answer either.

Definition 1.2. A factorization algebra \mathcal{F} on M is *locally constant* if for any inclusion of disks

$$D_1 \subset D_2$$

in M, the induced map

$$\mathcal{F}(D_1) \to \mathcal{F}(D_2)$$

is an equivalence.

We are going to use this as a definition.

Definition 1.3. A field theory is *topological* if Obs^q is locally constant.

Example 1.4. A locally constant factorization algebra on \mathbb{R} is an associative algebra.

Example 1.5. A locally constant factorization algebra on \mathbb{R}^{∞} is a commutative algebra.

Example 1.6. The data of a locally constant factorization algebra on \mathbb{R}^2 is a vector space V with an S^1 -family of multiplications.

Example 1.7. The data of a locally constant factorization algebra on \mathbb{R}^2 is a vector space V with many types of multiplications and coherencies.

Locally constant factorization algebras on euclidean spaces give a family of algebra structures starting from associative, and becoming more commutative as the dimension increases.

To precisely describe this structure, we will use the language of operads.

2. Operads

Let Fin^{bij} be the category of finite sets and bijections. The category of *symmetric sequences in* Sp is the functor category

$$Sseq(Spaces) := Fun(Fin^{bij}, Spaces).$$

Symmetric sequences can be given the structure of a monoidal category as follows. The composition product $R \circ S$ of two symmetric sequences is

$$(R \circ S)(n) = \bigoplus_{i} R(i) \otimes_{\Sigma_{i}} \left(\bigotimes_{j_{1} + \dots + j_{i} = n} (S(j_{1}) \otimes \dots \otimes S(j_{i})) \times_{\Sigma_{j_{1}} \times \dots \times \Sigma_{j_{i}}} \Sigma_{n} \right).$$

The unit of the composition product, denoted \mathcal{O}_{triv} , sends a finite set B to the unit $\mathbb{1}_{Spaces}$ of Spaces if |B| = 1 and to the zero object * of Spaces otherwise.

Definition 2.1. An operad in Spaces is a monoid object in Sseq(Spaces).

An operad \mathcal{O} in spaces has an underlying functor $\mathsf{Fin}^{\mathsf{bij}} \to \mathsf{Spaces}$. For each $i \in \mathbb{N}$, we denote by $\mathcal{O}(i)$ the image of the finite set with *i* elements [i] under this functor.

Example 2.2 (Little *n*-Disks Operad). Define an operad \mathbb{E}_n in spaces by

$$\mathbb{E}_n(k) = \operatorname{Conf}_k(\mathbb{R}^n),$$

the configuration space of k distinct points in \mathbb{R}^n , topologized as a subset of $(\mathbb{R}^n)^k$. The easiest way to see the product

$$\mathbb{E}_n \circ \mathbb{E}_n \to \mathbb{E}_n$$

is to consider each point in \mathbb{R}^n as a little open disk centered at that point. Then the product is just the inclusion of disks.

We think of the space $\mathcal{O}(k)$ as parameterizing k-ary operations for some type of algebraic structure.

Definition 2.3. An \mathcal{O} -algebra in \mathcal{C} is an object $V \in \mathcal{C}$ together with maps

$$\mathcal{O}(k) \otimes V^{\otimes k} \to V$$

for every k, compatible with the multiplication maps for \mathcal{O} .

Theorem 2.4 (Lurie). Locally constant factorization algebras on \mathbb{R}^n are the same as \mathbb{E}_n -algebras.

3. Factorization Homology

Recall that for a factorization algebra \mathcal{F} on M, we had a notion of *factorization homology* given by global sections

$$\int_M \mathcal{F} = \mathcal{F}(M).$$

We want to investigate this local to global structure in the locally constant case. For this, note that there is an equivalence

$$\operatorname{\mathsf{Emb}}^{\operatorname{fr}}\left(\bigsqcup_{k} \mathbb{R}^{n}, \mathbb{R}^{n}\right) = \operatorname{\mathsf{Conf}}_{k}(\mathbb{R}^{n})$$

which records the center of the disks.

We are going to construct a notion of factorization homology of an \mathbb{E}_n -algebra A over a framed n-manifold M;

$$\int_M A.$$