
FACTORIZATION ALGEBRAS: DAY 3

ARAMINTA AMABEL

1. Factorization Homology

1.1. Disk Categories.

Definition 1.1. Let Mfldn be the ∞-category of n-manifolds. This has objects n-manifolds and
morphisms smooth embeddings.

Let Diskn ⊂Mfldn be the full∞-subcategory consisting of manifolds isomorphic to finite disjoint
unions of Euclidean spaces.

Remark 1.2. If you are pretending these are just topological categories, the mapping spaces Emb(M,N)
are given the compact-open topology.

Remark 1.3. We consider the empty set to be an object of Mfldn for every n.

Remark 1.4. There are several other versions of disk categories (and categories of manifolds) that
we will consider during this seminar.

• Framed disks: Diskfr
n will have the same objects of Diskn but with framed embeddings as

morphisms. A framed embedding is an embedding M → N so that the given framing on M
and the pulled back framing commute up to a chosen homotopy.

Note that Diskn is a symmetric monoidal∞-category with tensor product given by disjoint union.
Given an n-manifold M , let Diskn/M denote the over category. Objects of Diskn/M are embeddings
U ↪→ M so that U is isomorphic to a finite disjoint union tRn of Euclidean spaces. Morphisms in
this category are triangles

U //

��

M

V

>>

that commute up to a chosen isotopy. The over category Diskn/M comes with a forgetful functor

Diskn/M → Diskn

Definition 1.5. An n-disk algebra A with values in a symmetric monoidal ∞-category V is a
symmetric monoidal functor

A : Diskn → V
Let Algn(V) denote the category of n-disk algebras.

1.2. En-algebras. Relationship between En-algebras and n-disk algebras. If we redo everything
above with framed manifolds, framed embeddings, and such, then a framed n-disk algebra is the
same as an En-algebra. The equivalence goes as follows. Given a framed n-disk algebra A with
values in V, define an En-algebra in V by A(Rn) and action

Emb(
∐
I

Rn,Rn)⊗A(Rn)⊗I → A(Rn)
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by identifying A(Rn)⊗I ' A(
∐
I

Rn) and applying the given embedding.

More precisely, there is an equivalence of categories

AlgDiskfrn
(V) ∼= AlgEn(V)

Definition 1.6. Let M be an n-manifold and A an n-disk algebra valued in V. The factorization
homology of M with coefficients in A is the homotopy colimit

colim
(
Diskn/M → Diskn

A−→ V
)

1.3. Homology Theories for Manifolds. Factorization homology satisfy a version, more suited
to manifolds, of the Eilenberg-Steenrod axioms for homology theories. The main axiom of such
theories is called “⊗-excision.”

Definition 1.7. A symmetric monoidal functor

F : Mfldn → ChQ

satisfies ⊗-exision if, for every collar-gluing U
⋃

V×R U ′ 'W , the canonical morphism

F (U)
⊗

F (V×R)

F (U ′)→ F (W )

is an equivalence.

Here F (V × R) inherits an E1-algebra structure from the copy of R1,

Embfr(
∐
I

R,R)⊗ F (V × R)⊗I ' Embfr(
∐
I

R,R)⊗ F (V × (
∐
I

R))→ F (V × R)

The tensor product

F (U)
⊗

F (V×R)

F (U ′)→ F (W )

is then the tensor product in modules over the E1-algebra F (V ×R). One reason we have restricted
to collar-gluings is so that this tensor product makes sense.

Definition 1.8. The ∞-category of homology theories for n-manifolds valued in ChQ is the full
∞-subcategory

H(Mfldn, ChQ) ⊂ Fun⊗(Mfldn, ChQ)

of symmetric monoidal functors that satisfy ⊗-excision.

Not only is factorization homology a homology theory for n-manifolds, it also is the only such
thing.

Theorem 1.9 (Ayala-Francis). There is an equivalence∫
: Algn(ChQ) � H(Mfldn, ChQ) : evRn

Remark 1.10. One can replace ChQ with a general symmetric monoidal ∞-category V as long as V
is “⊗-presentable. For details, see [AF15].
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1.4. Examples. We compute factorization homology
∫
M

A for simple choices of M and A.

Example 1.11. Take M = Rn. Then Diskn/Rn has a final object given by the identity map Rn = Rn.
Thus the colimit is given by evaluation on Rn,∫

Rn

A = colim
(
Diskn/Rn → Diskn

A−→ V
)

= A(Rn)

Example 1.12. Take M =
∐
I

Rn. Then Diskn/M again has a final object and as above we obtain∫
∐
I

Rn

A ' A(
∐
I

Rn) ∼= A(Rn)⊗I

Here we are seeing the fact that ∫
(−)

A :Mfldn → ChQ

is a symmetric monoidal functor.

Example 1.13. Take M = S1, as a framed manifold. Note that an E1-algebra A is the same
as an associative algebra Ā := A(R1). We will use excision to compute

∫
S1 A. Express S1 as a

collar-gluing

S1 ∼= R ∪S0×R R

By ⊗-excision, we have ∫
S1

A '
(∫

R
A

) ⊗
(
∫
S0×R A)

(∫
R
A

)
' Ā

⊗
Ā⊗Āop

Ā

where we obtained Ā ⊗ Āop because the two copies of R1 in S0 × R1 ⊂ S1 are oriented differently.
This is the Hochschild homology of A.

We have a functor Algn(V)→ V given by evaluating on Rn. This is the “forgetful functor.”

Definition 1.14. The left adjoint to the forgetful functor is the free functor

Fn : V → Algn(V)

Example 1.15. Consider the free n-disk algebra on V ∈ ChQ. This sends a disjoint union
∐
k

Rn to

⊕
0≤i

C∗(Emb(
∐
i

Rn,
∐
k

Rn))
⊗
Σi

V ⊗i

Example 1.16. We can similarly define a free framed n-disk algebra. In the framed case,

FnV (Rn) =
⊕
i≥0

C∗Embfr(
∐
i

Rn,Rn)
⊗
Σi

V ⊗i

Since Embfr(
∐

i Rn,Rn) ' Confi(Rn), this agrees with the free En-algebra on V .

Proposition 1.17. For M a framed manifold, and V ∈ ChQ, we have∫
M

FnV '
⊕
0≤i

C∗(ConfiM)
⊗
Σi

V ⊗i
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A similar statement is true in the non-framed case, we’re just being lazy.
For U ∼=

∐
I Rn we have

FnV (U) =

⊕
i≥0

C∗(ConfiR
n)
⊗
Σi

V ⊗i

⊗I ∼= ⊕
i≥0

C∗(ConfiU)
⊗
Σi

V ⊗i

Thus ∫
M

FnV = colimit
U∈Diskn/M

⊕
i≥0

(
C∗(ConfiU)

⊗
Σi

V ⊗i

)

=
⊕
i≥0

colimit
U∈Diskn/M

(
C∗(ConfiU)

⊗
Σi

V ⊗i

)

Let Diskfr
n/M denote the ordinary category of framed n-disks in M . We’ll just show things for

the ordinary category Diskfr
n/M , instead of for the ∞-category Diskfr

n/M . It turns out that this is
sufficient:

Theorem 1.18 ( [AF15]). The functor Diskfr
n/M → Diskfr

n/M is a localization. Hence factorization

homology can be computed as a colimit over Diskfr
n/M .

For a more direct proof in the ∞-category case, see Proposition 5.5.2.13 of [Lur17].
To compute this colimit, we use a hypercover argument. This is theorem A.3.1 in [Lur17]. Also

see [?] and [?].

Theorem 1.19 (Seifert-van Kampen Theorem). Let X be a topological space. Let Opens(X) denote
the poset of open subsets of X. Let C be a small category and let F : C → Opens(X) be a functor.
For every x ∈ X, let Cx denote the full subcategory of C spanned by those objects C ∈ C such that
x ∈ F (C). If for every x ∈ X, the simplicial set N(Cx) is weakly contractible, then the canonical
map

colim
C∈C

Sing(F (C))→ Sing(X)

exhibits the simplicial set Sing(X) as a homotopy colimit of the diagram {Sing(F (C))}C∈C.

To use the Seifert-van Kampen theorem, consider the following commutative diagram,

Diskfr
n/M

//

''

Confi(−)
((

Diskfr
n

Confi(−) // ChQ

Opens(M)

Confi(−)

66

Opens(ConfiM)

JJ

Let x̄ = (x1, . . . , xi) ∈ ConfiM . The category (Diskfr
n/M )x̄ contains embed disks U ↪→ M so that

{x1, . . . , xi} is in U . By the Seifert-van Kampen theorem, if B(Diskfr
n/M )x̄ ' ∗, then

colimit
U∈Diskn/M

ConfiU ' ConfiM

To show that this category is contractible, we will show it is cofiltered.
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Definition 1.20. A nonempty ordinary category C is cofiltered if
1) for every pair U, V ∈ C there exists W ∈ C and maps W → U and W → V , and
2) given two maps u, v : X → Y in C, there exists Z ∈ C and a map w : Z → X so that uw = vw.

Computation in the free case. Let U, V ∈ (Diskfr
n/M )x̄. We need to find a finite disjoint union of

euclidean spaces W →M containing (x1, . . . , xi) and maps W → U and W → V . Note that U ∩ V
contains x̄, but may not be a disjoint union of euclidean spaces. However, we can find a small disk
around each xi and still in U ∩ V . The second condition is satisfied since Diskfr

n/M is a poset.

Thus (Diskfr
n/M )x̄ cofiltered, and hence contractible. Applying the Seifert-van Kampen theorem,

(and adding in a few details about V ) we get∫
M

FnV '
⊕
i≥0

C∗(ConfiM)⊗Σi
V ⊗i

�

2. Exercises

2.1. Warm Ups.

Question 2.1. What is the factorization homology∫
[0,1]

A

of an associative algebra A?

Question 2.2. What can you say about
∫
S2 A for A a 2-disk algebra?

Hint: Use excision.

Question 2.3. Make sense of the tensor product in excision. How are things modules, algebras,
and such?

2.2. Poincaré Duality for Factorization Homology. Yesterday, you saw that ΩnX was an
En-algebra.

Question 2.4. Show that C•(Ω
nX) is an En-algebra.

Question 2.5. Write C•(Ω
nX) and ΩnX as n-disk algebras (valued in chain complexes and spaces,

respectively). Write them as factorization algebras as well.

Note that
ΩnX = Mapc(R

n, X).

Question 2.6. Let X be an n-connective space. Convince yourself that compactly supported maps

Mapc(−, X)

satisfies ⊗-excision. That is, given a collar glueing

M ' U
⋃
V×R

U ′,

there is an equivalence

Mapc(U,X)×Mapc(V×R,X) Mapc(U
′, X) ' Mapc(M,X).

You can do this by just skimming the proof given in [AF15, Lem. 4.5], if you want; or by trying it
out in a few easier cases.
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The following is a theorem of Salvatore, Segal, and Lurie, in various contexts. We are following
the proof of Ayala-Francis.

Question 2.7 (Nonabelian Poincaré Duality). Let X be an n-connective space. Show that∫
M

ΩnX ' Mapc(M,X).

If curious, ask a friend why for X an Eilenberg-MacLane space, the right-hand side looks like co-
homology. This motivates the relationship between nonabelian Poincaré duality and usual Poincaré
duality.

2.3. Enveloping Algebras. Let g be a Lie algebra. Recall the Chevalley-Eilenberg complex
CLie
• (g) from yesterday.

Question 2.8. Define a Lie algebra structure on

Mapc(R
n, g).

Show that
CLie
• (Mapc(R

n, g)

forms an n-disk algebra. Call it Ung.

Question 2.9. Show that U1g is the enveloping algebra Ug.’ Check this with your understanding
of Ug as an E1-algebra from yesterday.

Thus Ung gives us a version of the enveloping algebra in higher dimensions -a “higher enveloping
algebra” This is a key example in field theory. Many field theories have observables that look similarl
to a higher enveloping algebra construction. For example, any free theory has this property.

Question 2.10. Compute ∫
M

Ung.

Hint: use both the fact that CLie
• commutes with factorization homology and nonabelian Poincaré

duality.

2.4. Spare Questions.

Question 2.11. Show that
∫
M

A has a canonical action of Diff(M).

Question 2.12. Let H ⊂ GL(n) be a sub-Lie-group. You can think SO(n) if you want. Define a
notion of an H-oriented TFT in the functorial setting.

(1) Can you define a notion of an H-oriented En-algebra?
(2) How about an H-oriented factorization algebra?
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