
FACTORIZATION ALGEBRAS: DAY 4

ARAMINTA AMABEL

1. Functorial Things

As we have seen in the past two days, factorization algebras, En-algebras, and n-disk algebras
are all related by the fundamental transformation of thinking of embedded disks, or points at their
centers. By similar reasoning, observables are sometimes called point observables.

To record what we learned, we have a Costello-Gwilliam approach and a special case when the field
theory is topological. The observables are a factorization algebra in general, and in the topological
case we get a En-algebra in Ch.

Indeed, say our field theory is topological and lives on Rn. The factorization algebra of observables
only depends on the data of

F(Dn) ∈ Ch

and the multiplications coming from inclusions of disks into bigger disks. If we draw this, we see
that F(Dn) is the value at a disk centered at some point and then inclusion of disks can be pulled
out to be a bordism between spheres. This sphere is the linking sphere of the disk. The result,
which I’ll denote

F(Dn) = Z(Sn−1)

for its dependence on the linking sphere is the En-algebra in Ch.

1.1. Definition of Line Operators. Observables gave us some cool algebras to think about, but
there’s some structure of the field theory that it misses.

Example 1.1. Consider G-gauge theory on M . Given a loop C in M , we can define a map

Bun∇GM → R

sending a principal G-bundle P →M to the trace of the holonomy map

HolC(P ) : g→ g.

This is called a Wilson loop operator.

So given a loop in spacetime, we get a function on fields, which is something observables could
know about, but observables doesn’t see any of the dependence of loops in M .

In general, this type of construction giving observables depending on loops or lines in spacetime
are called line operators.

Remark 1.2. I know this is super vague. It’s my understanding that line operators are still partially
in the physics art stage rather than being fully mathematically understood.

Let’s think about what type of structure the set of line operators would have.
One piece of structure comes from stacking lines. This gives us a way of composing line operators.

We should get a category of line operators with

• objects: line operators (a pair of a line in spacetime and the operator), and
• morphisms: Hom(L,L′) is the set of point observables that can be inserted between L and
L′ to form a new line operator.
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Question 1.3. Is there any algebraic structure on the category of line operators?

For observables, the En-algebra structure came from looking at the linking sphere of the point we
were at. Let’s replicate that with lines. In Rn, the linking sphere of a line is Sn−2. Now instead of
including disks into bigger disks, we have lines colliding (analogous to points colliding). The result
is a bordism between copies of Sn−2. This is a En−1-algebra structure.

Claim 1.4. For a topological theory on Rn, line operators form an En−1-monoidal category Z(Sn−2).

Let’s add this to our table.

1.2. Line Operator Constructions. How do we say anything about line operators on the non-
topological side?

Idea 1.5. Let F be a field theory on M . There is an ansatz from physics that a line operator for
C ⊂M is the same as the data of boundary theory for F restricted to M \ Norm(C).

That is, the field theory works the same away from C and has a “defect” at C.
Thinking in terms of observables, in the topological Rn case, we would like an En-algebra away

from C.

Question 1.6. What is the data of observables of a boundary theory for F on M \ Norm(C)?

Theorem 1.7 (Ayala-Franics-Tanaka). Let A be an En-algebra. The data needed to produce a new
En-algebra that agrees with A on Rn \ Rk is an object in

LMod

(∫
Sn−k−1×Rk+1

A

)
.

Remark 1.8. To state this theorem, we are using the E1-algebra structure on∫
Sn−k−1×Rk+1

A.

This comes from the Rk+1 direction by stacking. This is related to the exercise from yesterday on
making sense of excision.

For line operators, we are looking at modules over∫
Sn−2

A.

This Sn−2 is the linking sphere of the line C that we encountered before.
Thus, we have an approximation to the category of line operators

LineOp ' Mod

(∫
Sn−2

A

)
.

2. Atiyah-Segal

Returning to the topological side, we start to see a pattern. Continuing down, we could ask for
the date of an En-algebra Z(Sn−1), an En−1-monoidal category Z(Sn−2), and so on.

We will use a functorial TQFT perspective to package together into a single functor.

Notation 2.1. For X an oriented manifold, let X denote X with the opposite orientation.

Definition 2.2. Let n be a positive integer. We define a category Cob(n) as follows:

• objects: (n− 1)-dimensional oriented manifolds
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• morphisms fromM toN are given by equivalence classes of n-dimensional oriented manifolds
with boundary B together with an an orientation-preserving diffeomorphism

∂B 'M tN

Two morphisms B and B′ are equivalent if there is an orientation-preserving diffeomorphism
B → B′ that restricts to the identity on the boundaries,

B //

'
��

B′

'
��

M tN M tN

Composition is given by gluing cobordisms along their shared boundary. View Cob(n) as a
symmetric monoidal category under disjoint union.

For k a field, let Vect(k) denote the symmetric monoidal category of k-vector spaces with tensor
product.

Definition 2.3 (Atiyah, Segal). Let k be a field. A topological field theory (TFT) of dimension n
is a symmetric monoidal functor Z : Cob(n)→ Vect(k).

In particular, Z(∅) = k.

Lemma 2.4. The value Z(Sn−1) is an En-algebra.

Proof. The pair of pants bordism gives the

En(2)⊗ Z(Sn−1)⊗2 → Z(Sn−1)

map. More legs, means more points. �

Remark 2.5. Note that Atiyah’s definition considers all possible spacetimes at once, instead of
working on one specific n-manifold at a time. We could instead consider the category of bordism
submanifolds within a fixed manifold.

Notation 2.6. For V a k-vector space, let V ∨ denote the linear dual, V ∨ : = Hom(V, k).

Let Z be an n-dimensional TFT. Given an oriented (n − 1)-manifold M , the product manifold
M × [0, 1] can be viewed as a morphism in Cob(n) in multiple ways.

• As a morphism from M →M , the product M × [0, 1] maps to the identity map

id: Z(M)→ Z(M).

• As a morphism M tM → ∅, the product M × [0, 1] determines an evaluation map

ev : Z(M)⊗ Z(M)→ k.

• As a morphism ∅ →M tM , the product M × [0, 1] determines a coevaluation map

coev : k → Z(M)⊗ Z(M).

Recall that a pairing V ⊗W → k is perfect if it induces an isomorphism V →W∨.

Proposition 2.7. Let Z be a topological field theory of dimension n. For every (n − 1)-manifold
M , the vector space Z(M) is finite dimensional. The evaluation map Z(M)⊗ Z(M)→ k, induced
from the cobordism M × [0, 1], is a perfect pairing.
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3. Classifying Topological Field Theories

3.1. Low Dimensions.

Example 3.1 (Dimension 1). Let Z : Cob(1) → Vect(k) be a 1-dimensional TFT. Let P denote
a single point with positive orientation and Q = P . Let Z(P ) = V . This finite-dimensional vector
space, determines Z on objects. By Proposition 2.7, Z(Q) = Z(P ) = V ∨. A general object of
Cob(1) looks like

M =
∐
S+

P t
∐
S−

Q

for S+, S− sets. Since Z is symmetric monoidal, we have

Z(M) =
∐
S+

V t
∐
S−

V ∨

What about morphisms? A morphism in Cob(1) is a 1-dimensional manifold with boundary B.
Using the monoidal structure, it suffices to describe Z(B) where B is connected. There are five
possibilities

• B is an interval viewed as a morphism P → P . Then Z(B) = IdV .
• B is an interval viewed as a morphism Q→ Q. Then Z(B) = IdV ∨ .
• B is an interval viewed as a morphism P tQ→ ∅. Then Z(B) : V ⊗V ∨ → k. By Proposition

2.7, this is the canonical pairing of V and V ∨,

Z(B)(x⊗ f) = f(x)

Under the isomorphism V ⊗ V ∨ ∼= End(V ), the morphism Z(B) corresponds to taking the
trace.
• B is an interval viewed as a morphism ∅ → P tQ. Then Z(B) is the map

k → V ⊗ V ∨ ∼= End(V )

sending λ ∈ k to λIdV .
• B = S1 is a circle viewed as a morphism ∅ → ∅. Then Z(S1) is a linear map k → k; i.e.,

multiplication by some γ ∈ k. To determine γ, view S1 as the union of two semi-circles
along P tQ. This determines a decomposition of S1 into the composite of two cobordisms,

∅ → P tQ→ ∅

By the above cases, Z maps this to the composite

k → End(V )→ k

of the map λ 7→ λIdV and the trace map. Thus Z(S1) is the scaling by Tr(IdV ) = dim(V )
map.

Remark 3.2. In 1-dimension, the observables are given by Z(S0) = End(V ). Notice that this has
the structure of an associative algebra.

Thus in dimension 1, we see that the vector space Z(P ) determines the TFT Z. Does every
V ∈ Vect(k) appear as Z(P ) for some 1-dimensional TFT? Nope, only the finite-dimensional ones.
We get an equivalence of categories

Fun⊗(Cob(1),Vect(k))→ Vectfin(k)

by evaluating on the point.
Let’s try to do something similar in dimension 2.
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Example 3.3 (Dimension 2). Let Z be a 2-dimensional TFT. The only objects in Cob(2) are the

empty set and disjoint unions of copies of S1. We don’t get a new object S1 since the circle has an
orientation-reversing diffeomorphism. The observables, A = Z(S1) determines Z on objects.

What about morphisms? A morphism in Cob(2) is 2-dimensional oriented manifold with bound-
ary.

• The pair of pants cobordism determines a map m : A ⊗ A → k. One can check that m
defines a commutative, associative multiplication on A.
• The disk D2 viewed as a cobordism S1 → ∅ determines a linear map Tr: A→ k.
• The disk D2 viewed as a cobordism ∅ → S1 determines a linear map k → A. The image of

1 ∈ k under this map acts as a unit for the multiplication. Indeed, we can glue D2 to one of
the legs of the pants. The resulting manifold is diffeomorphic to S1 × [0, 1]. But S1 × [0, 1]
maps to IdA under Z.

Note that the composite of

A⊗A m−→ A
Tr−→ k

comes from the cobordism S1 × [0, 1] viewed as a map S1 t S1 → ∅. By Proposition 2.7, the map
Tr ◦m is a nondegenerate pairing.

Definition 3.4. A commutative Frobenius algebra over k is a finite-dimensional commutative k-
algebra A, together with a linear map Tr: A → k such that the bilinear form (a, b) 7→ Tr(a, b) is
nondegenerate.

Theorem 3.5. The category of 2-dimensional TFTs is equivalent to the category of Frobenius
algebras.

Remark 3.6. In 2-dimensions, the observables Z(S1) of a TFT Z has the structure of a Frobenius
algebra.

4. Exercises

Let Z be an n-dimensional field theory.

Question 4.1. Show that Z(Sn−1) acts on Z(N) for every n-manifold N .

Question 4.2. ForG-gauge theory onM , we defined a Wilson loop operator. Given a representation
of G, define a version of a Wilson loop operator on GaugeGM .

Remark 4.3. For G-gauge theory on M , the category of line operators should be

Rep(G)× Rep(GL)

where GL is the Langlands dual group. (SO(2n)L = SO(2n), SL(n)L = PGL(n)).

Question 4.4. Let A be an En-algebra. Build two different (∞, n)-categories from A.

Question 4.5. If we think of the factorization algebra of observables as point operators, we see this
“pointyness” in the Weiss cover condition. If we wanted a notion of open covers that accounted for
both point and line operators, what would that look like?
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