
FACTORIZATION ALGEBRAS: DAY 5

ARAMINTA AMABEL

1. Review

Yesterday we talked about how for TQFTs the factorization algebra of observables (which is
En) can be situated in the Atiyah-Segal definition of a TQFT. We ended by classifying TQFTs in
dimensions 1 and 2.

2. Higher Dimensions

The problem when we try to classify TFTs in higher dimensions is that the objects become too
complicated. Up to reversing orientation and taking disjoint unions, the categories Cob(1) and
Cob(2) have a unique object, P and S1, respectively. For n = 3, there are infinitely many oriented
2-manifolds, one for each genus g. We don’t think of genus g surfaces as being that complicated.
In fact, we usually think of Σg, the genus g surface, as coming from g connect sums of the torus.
A closely related way to say this, is that Σg has a relatively easy handle-body decomposition. But
what happens when we view Σg under its handle-body decomposition? We’re really viewing it as a
composition of cobordisms; i.e., as a morphisms in Cob(2). Similarly, when we tried to understand
the value of a 2-dimensional field theory on S1, we broke S1 into the union of two semi-circles, that
is to say, into its handle-body decomposition.

If we want to be understand an n-dimensional field theory by breaking manifolds down, using
their handle-body decompositions, into lower-dimensional manifolds, we need the TFT to know
about manifolds of dimension < n − 1. In particular, we would like some sort of data assigned to
every (n − 2)-dimensional manifold and we would like this data to have something to do with the
values on (n − 1)-manifolds. In particular, from our discussion yesterday, we expect Sn−2 to be
assigned a category.

The way to encode all this data is the language of higher categories.

Definition 2.1. A strict n-category is a category C enriched over (n− 1)-categories.

For n = 2, this means that for objects A,B ∈ C the morphisms HomC(A,B) is itself a category.

Example 2.2. The strict 2-category Vect2(k) has objects cocomplete k-linear categories and mor-
phisms

HomVect2(k)(C,D) = Funcocon
k (C,D)

the functor category of cocontinuos, k-linear, functors.

Example 2.3. The strict 2-category Cob2(n) has

• objects: closed, oriented manifolds of dimension n− 2.
• morphisms: HomCob2(n)(X,Y ) =: C should be the category with

– objects: cobordisms X → Y
– morphisms: HomC(B,B

′) is equivalence classes of bordisms X from B → B′
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The big problem here is making the composition law strictly associative. One would like to define
composition by gluing bordisms, but get messed up in defining a smooth structure on the result,
and things that used to be equalities are now just homeomorphisms. The solution will be to get rid
of the “strictness” and move to (∞, 2)-categories.

Let Cobn(n) denote an (∞, n)-category version of the cobordism category, see Calaquee-Scheimbauer
[CS19].

Definition 2.4. Let C be a symmetric monoidal (∞, n)-category. An extended C-valued n-dimensional
TFT is a symmetric monoidal functor

Z : Cobn(n)→ C

Example 2.5. Take C so that ΩnC = C, Ωn−1C = VectC, and Ωn−2C = LinCatC. Then Z(Sn−2)
is an (∞, 1)-category. It has an En−1-monoidal structure from the pair of pants bordism. This
is line operators. Similarly, Z(Sn−k) is an En−k−1-monoidal (∞, n − k − 1)-category. It describes
(k + 1)-dimensional defects (i.e. operators).

The purpose of this definition is to allow us to reduced n-dimensional TFTs down to information
about 1-dimensional TFTs. As we saw before, a 1-dimensional TFT is determined by its value on
a point. Thus we might make the following guess.

Guess. An extended field theory is determined by its value on a single point. Moreover, evaluation
on a point determines an equivalence of categories between TFTs valued in C and C.

There’s two problems with this guess.

(1) Even in 1-dimension, not every vector space determined a TFT. We needed to restrict to
finite-dimensional ones. The analogue in higher dimensions will be something called “fully
dualizable objects.”

(2) Orientation in dimension 1 is the same as a framing. This isn’t true in higher dimensions.
We actually wanted a framing, not just an orientation so that we could say that locally Mk

was canonically diffeomorphic to Rk (via the exponential map). Thus we need a version of
Cobn(n) that works with framed manifolds instead of oriented ones.

The following conjecture is due to Baez and Dolan [BD95].

Conjecture 2.6 (Cobordism Hypothesis: Framed Version). Let C be a symmetric monoidal (∞, n)-
category with duals. Then the evaluation functor Z 7→ Z(∗) induces an equivalence

Fun⊗(Bordfr
n , C)→ C∼

between framed extended n-dimensional TFTs valued in C and the fully dualizable subcategory of C.

Partial and complete proofs are due to Hopkins-Lurie, Lurie [Lur09], Grady-Pavlov [GP21]. Lots
of others have worked on this as well.

Remark 2.7. This leads to the natural question, given Z(pt), how does one obtain Z(N)? It’s
expected that there is a version of factorization homology for (∞, n)-categories so that∫

N

Z(pt) = Z(N)

for all manifolds N of dimension 0, . . . , n. This is discussed in work of Ayala-Francis; see [AF17].
The upgraded factorization homology is referred to as “β-factorization homology.”

Take C to be a suitable choice of an (∞, n)-category of algebras up to Morita equivalences

C = Moritan.
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See Scheimbaurer’s thesis [Sch14] for a factorization homology reconstruction of a fully extended
TQFT with Morita target. The fully dualizable objects of Moritan−1 are certain types of En−1-
algebras. Thus, you can describe an n-dimensional TQFT by just giving an En−1-algebra (satisfying
certain conditions) that the field theory assigns to a point.

Usually, we are thinking of an n-dimensional TQFT as corresponding to it’s En-algebra of ob-
servables, so what’s up with the En−1-algebra? How do we get from Z(pt) to Z(Sn−1)?

2.1. Drinfeld Centers. To answer this question, we are going to use a version of a notion Delaney
talked about yesterday.

You saw yesterday that Drinfeld centers created braided monoidal structures from just monoidal
structures. You can think of that as saying that the center of an E1-category is E2. More generally,
we have the higher version of the Deligne conjecture due to Kontsevich, [Kon99].

Theorem 2.8 (Deligne Conjecture; Lurie). The En-Drinfeld center of an En-category is and En+1-
category.

This was proven in full generality in [Lur17, §5.3]. Specifically, see [Lur17, Cor. 5.3.1.15].
One can show that En-Drinfeld center of Z(pt) is Z(Sn−1), answering our previous question.
As a good geometric example, we have the following theorem.

Theorem 2.9 (Ben-Zvi, Francis, Nadler). Let X be a perfect stack. The center of quasi-coherent
sheaves on X is sheaves on the free loop space,

CentEn(QC(X)) ' QC(LnX).

See [BZFN10, Thm. 1.7 and Cor. 5.12].

3. Holomorphic Field Theories

Now I want to switch gears and talk about non-topological field theories. These will provide our
first example of factorization algebras that are not En-algebras.

Recall that a function

f : C→ C

is holomorphic if it is complex differentiable at every point. Equivalently, if we write

f(x+ iy) = u(x, y) + iv(x, y),

and assume f is continuous, then f is holomorphic if and only if f satisfies the Cauchy-Riemann
equations

∂u

∂x
=
∂v

∂y

and
∂u

∂y
= −∂v

∂x
.

This is the Looman-Menchoff theorem.
Basically these are incredibly nice complex functions. In order to make sense of holomorphic

conditions, our holomorphic field theories will have spacetime Cn.
Topological field theories were particularly nice because of their invariance property on observ-

ables,

Obsq(D1)
∼−→ Obsq(D2).

To be able to get somewhere with holomorphic theories, we will additionally assume an invariance
property: translation invariance.

3



Let V be a holomorphically translation-invariant vector bundle on Cn. This means that we are
given a holomorphic isomorphism between V and a trivial bundle. Our space of fields will be

Ω0,∗(Cn, V ).

Note that by Dolbeault’s theorem, this complex has cohomology

H0,∗(Cn, V ) = H∗(Cn,Ω0 ⊗ V )

where Ω0 is the sheaf of holomorphic functions on Cn. Thus, our space of fields is a derived model
for the mapping space of holomorphic functions

Maphol(C
n, V ).

Let

ηi =
∂

∂z̄i
∨ (−) : Ω0,k(Cn, V )→ Ω0,k−1(Cn, V )

be the contraction operator.

Definition 3.1. A field theory on Ω0,∗(Cn, V ) is holomorphically translation invariant if the action
functional

S : Ω0,∗(Cn, V )→ C

is translation-invariant and satisfies
ηiS = 0

for all i = 1, . . . , n.

As with topological theories, we are interested in how the holomorphically translation-invariant
condition on a field theory impacts the factorization algebra of observables.

To make the following definition precise requires more background and time than we have. Here
is the idea; details can be found in [CG17, Def. 8.1.1] and [CG17, Ch 5. Def. 1.1.1].

Definition 3.2. A factorization algebra F on Cn is holomorphically translation invariant if we have
isomorphisms

τx : F(U) ' F(τxU)

for all x ∈ Rn and open U ⊂ Rn. These isomorphisms are required to vary holomorphically in x and
satisfy

τx ◦ τy = τx+y

and commute with the factorization algebra maps.

Note that Obsq will be a factorization algebra on Cn. The following is [CG21, Prop. 9.1.1.2].

Theorem 3.3 (Costello-Gwilliam). The observables Obsq of a holomorphically translation-invariant
field theory is a holomorphically translation-invariant factorization algebra.

Say we are working over C. Assume that our field theory additionally is S1-invariant. That is,
that there is an S1 action on V which, together with the S1 action on Ω0,∗(C), gives an action on
the space of fields, and all the structures of the field theory are invariant under this.

In this situation, we will get a nice algebraic description of the observables, like we did for locally
constant factorization algebras as En-algebras.

The following is [CG17, Ch. 5, Thm. 0.1.3].

Theorem 3.4 (Costello-Gwilliam). A holomorphically translation-invariant and S1-invariant fac-
torization algebra on C determines what is called a vertex algebra.

Definition 3.5 (Borcherds). A vertex algebra is the following data:

• a vector space V over C (the state space);
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• a nonzero vector |0 >∈ V (the vacuum vector);
• a linear map T : V → V (the shift operator);
• a linear map

Y (−, z) : V → EndV [[z, z−1]]

such that

• (vacuum axiom) Y (|0 >, z) = idV and

Y (v, z)|0 >∈ v + zV [[z]]

for all v ∈ V ;
• (translation axiom) [T, Y (v, z)] = ∂zY (v, z) for every v ∈ V and T |0 >= v;
• (locality axiom) for any pair of vectors v, v′ ∈ V , there exists a nonnegative integer N such

that
(z − w)N [Y (v, z), Y (v′, w)] = 0

as an element of EndV [[z±1, w±1]].

See [BZF04] for a good reference on vertex algebras.

Remark 3.6. Vertex algebras were around before factorization algebras. They have the benefit of
being super computational. If you are really good at power series manipulations, or more familiar
with representation theory methods, vertex algebras might be better suited for you. Factorization
algebras are more geometric and closer to the topologists En-algebras.

As motivation for the proof, recall how we got an En-algebra A from a locally constant factor-
ization algebra FA on Rn. The underlying space of A is given by

FA(U)

where U is any disk in Rn. For convenience, we can take U = B1(0), the unit ball around the origin.
The structure maps are from the inclusions of disjoint disks in to B1(0),

FA(Br(0))⊗FA(Br′(0))→ FA(B1(0)).

We will get a vertex algebra from a holomorphically translation-invariant factorization algebra
by a similar process, with one important difference.

Vertex algebras act more like Lie algebras.

They have structures like Lie brackets, rather than multiplications like groups do. If evaluating
on B1(0) gave us a group like structure, than to get a Lie algebra structure, we should somehow
take the tangent space at 0. This is in analogy with how given a Lie group G, one obtains the Lie
algebra as TeG.

Proof Idea. Let F be the holomorphically translation-invariant and S1-invariant factorization alge-
bra on C. Let

Fk(Br(0))

be the weight k eigenspace of the S1 action. To zoom in on 0, we take the limit

Vk = limr→0H
•(Fk(Br(0)).

(CG assume the maps in this limit are quasi-isomorphisms.) (They also assume that Vk = 0 for
k >>.)

The underlying vector space of the vertex algebra will be

V =
⊕
k∈Z

Vk.

The vacuum element is given by the image of the unit in F(∅).
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The translation map is given by the derivation ∂
∂z from infinitesimal translation in the z direction.

The state-field map
Y : V → End(V )[[z, z−1]]

comes from the inclusion of two disjoint disks into a bigger disk, and expanding the holomorphic
map into a Laurent series. �

Factorization homology in the language of vertex algebras is called “conformal blocks.”

3.1. Examples.

Example 3.7. A commutative ring V with derivation T determines a vertex algebra with state
space V , translation operator T , and state-field correspondence

Y (u, z)v = uv.

Example 3.8. Given a manifold X, differential operators DiffX is an associative algebra, so a
type of factorization algebra on R. A 2-dimensional analogue would be something like a factor-
ization algebra on R2); for example, a vertex algebra. Such a vertex algebra was constructed by
Malikov-Schechtman-Vaintrob [MSV99] and is called chiral differential operators. The factorization
algebra analogue was build by Gorbounov-Gwilliam-Williams [GGW20]. This is an example of a
factorization algebra build from a Lie algebra in an enveloping algebra-esque construction.

4. Duality

We understand field theories by studying their observables. This translation is great for a few
things:

• a precise definition of topological field theory
• take advantage of the structure of factorization homology
• quantization algebraically becomes deformationo

I want to end by talking about another benefit of this viewpoint. Basically in all fields of math I
think about, notions of duality are super exciting. For example, Poincaré duality in manifold theory.
In your problem sessions, you saw a version of this called non-abelian Poincaré duality.

Question 4.1. Are there notions of dualities in field theory and factorization algebras?

We are going to start on the algebra side. The cool type of duality for algebras is called Koszul
duality.

Definition 4.2. Let A be an associative algebra. The Koszul dual of A is the linear dual

D(A) = (1⊗A 1)∨.

Here 1 denotes the trivial (left or right) A-module.

We can recover this construction using factorization homology. Indeed, there is an equivalence∫
D1

A = 1⊗A 1

for any E1-algebra A.
This motivates a definition of Koszul duality for En-algebras.

Definition 4.3 (Ayala-Francis). Let A be an En-algebra. The Koszul dual of A is

D(A) =

(∫
Dn

A

)∨
.

This is explained in [AF14, Thm. 3.3.2].
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Remark 4.4. There is a different original definition of the Koszul dual of an En-algebra, due to
Ginzburg-Kapranov and Lurie if different contexts. Really Ayala-Francis’ result is that the definition
I gave above agrees with these previous definitions.

Recently, Ching and Salvatore [CS20] proved a long standing conjecture regarding the Koszul
dual of the operad En.

Theorem 4.5 (Ching-Salvatore, 2020). The En-operad is Koszul dual to itself.

This was previously known at the level of chain complexes; see [GJ94]. Ching and Salvatore’s
result aslo recovers a previously known result on the level of algebras.

Corollary 4.6. The Koszul dual of an En-algebra is an En-algebra.

This can be found several places, including [Lur17, §5.2.5].

Example 4.7. Let g be a Lie algebra. The Koszul dual of the enveloping algebra U(g) is the Lie
algebra cochains,

D(Ung) = C•Lie(g).

This is also true for the En-enveloping algebra Un(g). The Koszul dual of Un(g) is C•Lie(g), viewed
as an En-algebra, see [AF19, Cor. 4.2.1].

Thus, you can ask if the factorization homology of dual algebras are related. The following is the
main theorem of [AF19].

Theorem 4.8 (Poincaré/Koszul duality, Ayala-Francis). Under conditions, there is an equivalence∫
M

A '
(∫

M+

D(A)

)∨
.

The changing of M to M+ reflects, for example, the difference in Poincaré duality for manifolds
with boundary.

Turning back to the field theory side, note that the Koszul dual of observables on Rn has the
right algebraic structure to be observables of a different field theory on Rn. That is, let ObsX denote
the observables of a field theory X. We would like to know if there is another field theory Y so that
the Koszul dual of observables on X is observables on Y; in symbols

D(ObsX) ' ObsY.

Conjecture 4.9 (Costello-Paquette, Costello-Li). Koszul duality for observables corresponds to
AdS/CFT duality.

See [CP21] and the references therein.
To make this conjecture precise, one would need a notion of Koszul duality for factorization

algebras. That is an open problem. Checking this conjecture in examples is an active area of
research by lots of people.

5. Exercises

Let Z be a fully extended n-dimensional TQFT valued in C with ΩnC = C, Ωn−1C = VectC, and
Ωn−2C = LinCatC.

Recall that Z(Sn−1) is an En-algebrain Vect Z(Sn−2) is an En−1-algebra in LinCat.

Question 5.1. Show the analogous statement for Z(Sn−k).

Question 5.2. Let K be a (n− 1)-manifold with boundary. Show that K determines an object in
Z(∂K).
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Question 5.3. Can you describe the unit of Z(Sn−2)?

Question 5.4. Let A be an En-algebra. Recall from yesterday’s exercises that you constructed an
(∞, n)-category from A. Use this construction to write down sensible values for an n-dimensional
field theory Z with Z(Sn−1) = A. In particular, write down Z(Sn−k) for all k, and Z(pt).

Question 5.5. Show that a vertex algebra (V, Y, T ) with

Y (u, z) ∈ EndV [[z]]

is equivalent to one formed by a commutative ring with derivation.
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