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1 Lecture 1: 2023 May 1

� Today: Generalities and Serre Spectral Sequences. Note: These things have many different names, so
your milage may vary on the literal terminology.

� Tomorrow: Serre

� Wednesday: Atiyah-Hirzebruch

� Thursday/Friday: Adams Spectral Sequence

1.1 What is a spectral sequences

In the spirit of Ravi Vakil: Spectral sequences are so called because they are like spirits and are scary. This
is undeserved.

Cohomolog — “well-oiled machine” You can use this to make a bunch of computations. Spectral sequences
are in the same vein and work in largely the same way (a big machine) but more complicated. We’ll learn
how to drop problems in the SS machine.
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This machine computes Abelian groups, vector spaces, more generally objects in an Abelian category.
Starting point: E2-page (E

∗,∗
2 ). This is a bigraded array of objects in our Abelian category together with

data of differentials.
The differentials are

d2 : Ep,q
2 → Ep+2,q−1

2

and satisfy d22 = 0.
Once you know this data,

H(E•,•2 , d2) =: E3-page

which has further differentials
d3 : Ep,q

3 → Ep+3,q−2
3 .

Now rinse and repeat:
H(E•,•3 , d3) =: E4-page

with
d4 : Ep,q

4 → Ep+4,q−3
4

and so on!
Theo asked if knowing all the En and dn do we determine dn+1 on the En+1-page? Arun said not for

free.
We hope that this process stabilizes at some point. When this happens we get an E∞-page. It does

stabilize in many cases of interest. Ty[oca;;y E•,•∞ is the associated graded of the thing you wanted to
compute with respect to some filtration.

Remark 1.1.1. Often this filtration appears in the construction of the spectral sequence.

A good reference: Boardman’s Conditionally Convergent Spectral Sequences. This is for when looking
at spectral sequences which don’t necessarily converge but still might be useful.

Example 1.1.2 (The Serre Spectral Sequnce for the Fibre Bundle). Consider

U(1) EU(1)

BU(1)

which is

S1 S∞

CP∞

or
K(Z, 1) ∗

K(Z, 2)

We’ll have that
E∗,∗2 = Hp

(
BU(1);Hq(U(1);Z)

)
converges to

H•(S∞,Z) = Z;

note the last statement holds because S∞ is contractible. Here’s how to see this
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q∗
1 Z Z Z Z
0 Z Z Z Z

∗p
0 2 4 6 · · ·

Now d2 gives a diagonal downwords map ↘: d2 : Z → Z which vanishes in degree q = 0. Turns out that

d2 : E2k,1
2 → E2k+3,0

2

is an isomorphism. Take homology to get 0 and hence the E3-page:

0 Z
0

Thus we have only one nonzero term and so E3 = E4 = · · · = E∞. In terms of generators and relations:

1 x c1x c21x c31x

0 1 c1 c2

Then
d2(x) = c1, d2(c1) = 0, d2(c1x) = d2(c1x) + (−1)c1d2(x) = −c21

Definition 1.1.3. A fibre bundle is a map p : E → B of topological space which locally in B looks like
B × F (in the sense that there is a local trivialization in the open topology on B). If F is a vector spaces
and the transition functions are linear this is a vector bundle.

Definition 1.1.4. If F ∼= G for a topological gorup G and the transition functions commute with the action
of G on itself by left multiplication then this is a principal G-bundle (also known as a (left) G-torsor).

Remark 1.1.5. There is a homotopical analogue of fibre bundles which are called fibrations. For the purpose
of this week, we can interchange the two terms. Many homotopical properties of fibre bundles carry over to
fibrations.

Example 1.1.6. Consider:

Z /2Z Sn

RPn

which is a principal Z /2Z-bundle. Consider also

U(1) S2n−1

CPn

as a principal U(1)-bundle and

Sp(1) S4n−1

HPn
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Let (X,x) be a pointed topological space. There is then a fibration

ΩX PX

X

where ΩX is the based loop space of X and PX is the path space of X (where we assume that paths begin
at the basepoint x). We also have, for A an Abelian group, the fibration

K(A,n− 1) ∗

K(A,n)

For any topological group G there is a universal principal G-bundle

G EG

BG

in the sense that for every G-torsor P , there is a unique f : X → BG (uniqueness up to homotopy) for which
there is a pullback diagram

P EG

X BG
f

Facts:

� Producing the space BG is functorial in G.

� When G is discrete at least, H•(BG) is the group cohomology of G.

Other fibrations: If we have an SES

1 G H K 1

there is a fibration
BG BH

BK

Now the “Leray-Serre spectral sequence” or “Serre spectral sequence.”

Theorem 1.1.7 (Leray, Serre, Lyndon, Hochschild; note Leray worked on this while a prisoner of war under
the tyranny of the Nazis). If we have a fibration

F E

B

then there is a spectral sequence, for any commutative ring A,

Ep,q
2 = Hp

(
B;Hq(F ;A)

)
⇒ Hp+q(E;A).

Note that the =⇒ arrow states that E∞-page exists and is the associated graded of a filtration on H•(E;A).
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Note that
dr : Ep,q

r → Ep+r,q+1−r
r

and the spectral sequences is multiplicative in the sense that

dr(xy) = dr(x)y + (−1)|x|xdr(y)

Remark 1.1.8. Some of this assumes that B is simply connected. If it is not, then we need to take the
twisted cohomology of B which is messy. We need to twist by local systems and do stuff locally (remark by
Geoff: the monodromy representations sneak their heads into the story).

1.2 Edge Homomorphisms

Consider
F E

B

THen we get morphisms Hp(B) → Ep,0
∞ from the horizontal line of the sequence and this is Hp(B) → Hb(E)

and likewise for the vertical line when p = 0 and H•(E) → H•(F ).

Example 1.2.1. Consider the fibration:

S1 S2n−1

CPn

and note that
H•(Sn;Z) = Z[x]/(r2), |n| = r

Work backwards: Use the chomology of S2,S2n−1 to infer H•(CPn−1). If d2(x) = 0 then x maps to 0∞.

Observation from a question: The edge homomorphisms are a way of computing that pullback.

2 Lecture 2: 2023 May 2

Serre Spectral Sequence Part 2
Recall: Associated to a fibration

F E

B

there is the Serre spectral sequence

Ep,q
2 = Hp

(
B;Hq(F ;A)

)
⇒ Hp+q(E;A)

where A is a commutative ring. The differentials are “generalized knight’s moves:
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d2

d3

d4

The Serre spectral sequences is also multaplicative1 in the sense that

dn(xy) = dn(x)y + (−1)|x|xdn(y).

This is natural for pullbacks of fibrations/fibre bundles in the sense that given two fibrations and a diagram

F F ′

E E′

B B′

in which the bottom square is a pullbakc then there is a morphism

E2(E
′ → B′) → E2(E → B).

In particular the pullback of E2 will be E2 of the pullback.

2.1 Gysin Long Exact Sequence

Assume that B is simply connected and consider a sphere bundle

Sn−1 E

B

Note that if B is not simply connected then E → B is oriented. A counter example that shows that you
cannot freely drop simple connectivity comes from taking E to be a unit sphere bundle insade a verctor
bundle.

Let’s throw the Serre spectral sequence at this fibration. Get:

Z n− 1 H0(B) H1(B) H2(B) · · ·

Z 0 H0(B) H1(B) H2(B) · · ·

Just because of where things live on E2, the only possible nonzero differential is dn. By multiplicativity, if
x ∈ Hk(B), regarded as living in Ek,n−1

n then

dn(x) = xdn(1) + 1dn(x) = xdn(1)

1Some terms and conditions apply. Your mileage may vary.
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so dn(x) = xdn(1). Note that we used that x ∈ Ek,0
n . Consequently, let e(E) := dn(1) ∈ Hn(B). This is the

Euler class of E. This is a natural character class of sphere bundle. Thus we get that, from the naturality
of Serre spectral sequence

e(f∗B) = f∗e(B).

Now consider the map dn : Hk(B) → Hk+n(B) which is given by multiplication by the Euler class. The
homology with respect to d gives us En+1 = E∞ and so we get an exact sequence:

− Ek,n−1
∞ Hk(B) Hk+n(B) Ek+n,0

∞ 0
dn

Filtration on H∗(E) conming from the E∞-page, we get a short exact sequence

0Ek,0
∞ Hk(E) E0,k

∞ 0

Glue to build an exact sequence

Hk(B) Hk+n(B) Hk+n(E)
∪e(E) π∗

where the π∗ is induced by the edge homomorphism. Repeating mutatis mutandis for the right side of the
sequence we get the long exact sequence

· · · Hk(B) Hk+n|(B) Hk+n(B) Hk+1(B) · · ·∪e(E) π∗ π∗

Note that the pushforward is given by integration on the fibre and this is called the Gysin long exact sequence.

Remark 2.1.1. If instead we have a fibration

F E

Sn

then we get the Wang long exact sequence.

Remark 2.1.2. The most general version of Gysin is very general. A long exact sequence contianing the
Smith homomorphism2 in place of e(E). This comes up in physics in the study odefects, symmetry breaking,
etc.

One feature of sepctral sequences we may have notices is that “the last possible differential” is the most
important. In particular, if dn is the last differential and dn(x) = y, x ∈ E0,n

2 , y ∈ En+1
2 , 0 we say that x

transgress to y. Some examples: Gysin, H∗(CPn), H∗(HPn), H∗(BUn), · · · .

Example 2.1.3. Eilenberg-MacLane spaces. Consider that

πk(K(A,n)) =

{
A if k = n;

0 else.

Then also we get that ΩK(A,n) = K(A,n− 1). Now consider, if x ∈ X is a base point, then the fibration

ΩX P (x) ∗

X

≃

2A generalization of the Euler class.
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implies that we have a fibration

K(A,n− 1) ∗

K(A,n)

which powers inductive computations of H•(K(A,n)). So:

H•(K(A,n);A) =


0 1 ≤ k ≤ n;

A k = n;

???? k > n.

Now from the Serre spectral sequence applied to the fibration

K(A,n− 1) ∗

K(A,n)

as

n− 1 A

A
n

we see that dn is the only way to kill these two “tautological” copies of n. Thus E∞ has to be zero there
and so the transgression must be an isomoprhism in this case.

Theorem 2.1.4 (Borel’s Transgression Theorem). If G is a connected Lie group and A is a commutative
ring such that H•(G;A) is a nil-square algebra on odd-degree generateors3. Then H•(BG;A) ∼= A[y1, · · · , yk]
where each yi is in even degree and in the Serre spectral sequence for

G EG

BG

xi transgresses to yi.

Example 2.1.5. G = SUn,Un,Spn and A ∈ Cring.

Example 2.1.6. G = SOn,Spinn,On with A with 2 a unit in A.

Example 2.1.7. G = PSUn,PSpn,PSOn, A = Q.

Example 2.1.8. Consider G = SU3. Then there is a fibration

SU2 SU3

SU3 / SU2

where SU3 /SU2
∼= S5 is simply regarded as a coset space. Now we find that the Serre sepctral sequence

takes the form

3That is H•(G;A) is an exterior algebra on odd-degree generators.
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3 y yz

0 1 z
0 n

and all the diferentials vanish. So

H•(SU3;Z) =
Z[y, z]
(y2, z2)

where |y| = 3, |z| = 5. Now this generalizes to give us H∗(SUn).

Example 2.1.9. Consider the firbation

SO3 ∗

B SU3

Bore’s Transgression Theorem gives H∗(B SU3; ;Z) = Z[d4, d6]. For SUn the trick is the exact same, while
Spn and Un are similar. For SOn and Spinn we have to work harder to find the transgressing differential.

Some cohomology rings:

� H•(BUn;Z) = Z[c2, · · · , cn], |ci = 2i

� H•(B SUn;Z) = Z[c2, c3, · · · , cn].

3 Lecture 3: 2023 May 3

3.1 The Atiyah-Hirzebruch Spectral Sequences

Recall the Serre spectral sequences is

Ep,q
2 = Hp

(
B,Hq(F )

)
⇒ Hp+q(E)

has a dual homological version
E2

p,q = Hp

(
B;Hq(F )

)
⇒ Hp+q(E)

with differentials given by reverse generalized knight’s moves:

d2

d3

d4

Remark 3.1.1. There is no ring structure on Hk but the homological Serre spectral sequences is a spectral
sequence of coalgebras.

Definition 3.1.2 (Eilenberg-Steenrod Axioms). Ordinary homology theory H• : Top → Ab satisfies:
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1. Homotopy equivalent functions induces the same map on homology, i.e., if f ≃ g then H•(f) = H•(g).

2. Excision: Given inclusions U ⊆ A ⊆ X with U ⊆ int(A) the inclusion

(X \ U,A \ U) → (X,A)

induces an isomorphis on homology.

3. Coproducts get set to direct sums in homology.

4. There is a long exact sequence of A → X → X/A.

5. H•(∗) = A in degree zero only

Remark 3.1.3. These five axioms uniquely characterize homology. What happens if we remove Axiom 5?

Definition 3.1.4. A functor that satisfies Eilenberg-Steenrod axioms 1 – 5 is a generalized homology pair.

Remark 3.1.5. There is likewise a notion of ageneralized cohomology theory.

Lots of these generalized homology theories are merely homotical rather than geometric. But there are plenty
of geometric ones!

3.2 K-Theory

Let Vec(X) denote the monoid of vector bundles on X under direct sum. Define the 0-th K-group of X to
be the group completion of the monoid

K0(X) := Ṽec(X)

which has formal rule E−F ≃ E⊕G−F ⊕G. This is in fact a ring under tensor product for multiplication.
KO0(X) is the same thing with real vector bundles.

Both of these generalize to generalized cohomology theories K∗,KO∗ representable in degres in terms of
bundles of Clifford-modules.

The periodicity of Clifford says that K∗(X) is 2-periodic in the sense that Kn(X) ∼= Kn+2(X) and
KO∗(X) is 8-periodic.

Bott-periodicity says that
K∗(∗) = Z, 0,Z, 0,Z, 0, · · ·

and K∗(∗) = Z[β, β−1] with degree |β| = 2. Similarly,

KO∗(∗) = Z,Z /2,Z /2, 9,Z, 0, 0, 0,Z,Z /2, · · · .

You can remember this by singing the Bott song!

3.3 Bordism

Generalized homology theory ΩO
∗ (X) = {n−manifolds that bound <→ X}.

Remark 3.3.1. If M = ∂N for a compact (n+ 1)-manifold N then M → X extends to N → X.

If X = {∗ then
The torus T2 bounds a “solid donut.” In particular [T2] = 0 in Ω0

2∗) but [RP2] ̸= 0 in ΩO
2 (∗).

ΩO
k ΩSO

k ΩSpin
k ΩString

k Ωpin−
k

o data Orientation Spin String Pin-
0 Z /2 · ∗ Z ·∗ Z ∗ Z Z /2
1 0 0 Z /2 Z /2 Z /2

2 Z /2 · RP2 0 Z /2 · T2 Z /2 · T2 Z /8 · RP2

3 0 0 0 Z /24 · S3 0

4 Z /2CP2 ⊕Z /2OP4 ZCP2 Z ·K3 0 0
5 Z /2 · SU3 /SO3 Z /2 · SU3 /SO3 0 0 0
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Other generalized homology theories:

� Kitoev advocates this idea that the groups of SPT phases for a symmetry G are the values of a
generalized homology theory on BG (bosonic fermionic will be different theories; cf. Xiang, Goiotto –
Johnson-Freyd).

� Freed-Hopkins-Teknon: Freed-Hopkins provide an implementation of this idea using the genralized
cohomology theory of invertible field theories of manifolds of a map to X.

3.4 The Atiyah-Hirzebruch Spectral Sequence

Let X be a space and R a generalized cohomology theory. This is a generalized cohomology theory

Ep,q
2 = Hp(X;Rq(∗)) ⇒ Rp+q(X).

Some facts:

� This is natural in X and in R.

� Homological version: If R is a generalized homological theory

E2
p,q = Hp(X;Rq(∗)) ⇒ Rp+q(X).

� This is multiplicative if R is a ring spectrum.

The Leray-Serre-Atiya-Hirzebruch spectral sequence takes a firbation

F E

B

(assume that B is simply connected) and for R a generalized cohomology theory, there is a spectral sequence

Ep,q
2 = Hp(B,Rq(F )) ⇒ Rp+q(E)

which is natural and which is multipliciative whenever R is.

Example 3.4.1. LEt’s compute K∗(CP∞) and input H∗(CP∞;Z) = Z[c] where |c| = 2 and K∗(∗) =
Z[β, β−1] for |β| = 2. Now:

q
Zβ2 4 β2 β2c β2c2 β2c3

3
Zβ 2 β βc βc2 βc3

1
Z 0 1 c c2 c3

0 1 2 3 p
−1

Zβ−1 −2 β−2 β−1c β−1c2 β−1c3

−3

We get that E2 = E∞ because all elements in even total degree and differentials raise the degree by 1 and
so all differentials vanish. Thus

K∗(CP∞) = Z[c]⊗Z Z[β, β−1] ∼= Z[β, β−1, c]

where |c| = |β| = 2.
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Some useful facts about the AHSS:

� I totally missed this so here’s a dinosaur pun: what do you call a ds/dt-raptor? A velocity-raptor!

� Another useful fact: The AHHS for R∗(−) ⊗ Q always collapses. So in particular, there are no
differentials and no extension problems.

So what happens when we do have differentials? Maunder identifies some AHSS differentials in terms of
stable cohomology operations.

Definition 3.4.2. A stable cohomology operation is a natrual transformation

H•(−;A) → H•+k(−;B)

that commutes with the suspension isomorphism.

Example 3.4.3. Here is a table of examples and nonexamples:

Examples Nonexamples

Reduction modulo p Cup products!
Bockstein Pontryagin square

STeenrod squares

Remark 3.4.4. The Steenrod squares are the generators of the ring A (the Steenrod algebra) of stable
cohomology operations for A = B = Z /2. It has an axiomatic characterization

1. Sqi is natrual in pullback and raises degree by i.

2. Sq0 = id and

Sqi(x) =


0 |x| < i

x2 |x| = i;

??? |x| > i

3. Sq satisfies the Cartan formula Sq(xy) = Sq(x)Sq(y), and

[Sqn(xy) =
∑

i+j=n

Sqi(x)Sqj(y).

Theorem 3.4.5 (Maunder). The first nonzero differential in AHSS for R is a stable cohomology operation
coming from data of R.

Example 3.4.6. For R = KU we consider that d3 : Hp → Hp+3 is a stable cohomology operation! Specifi-
cally: it is β ◦ Sq2 (mod 2) where β : Hk(−;Z /2) → Hk(−;Z). Higher differentials are more mysterious.

Example 3.4.7. Consider for KO:

Z Z /2 Z /2 0 Z 0 0 0 Z
Sq2◦ (mod 2)

Sq2

β◦Sq2

Sq2Sq1Sq2

I missed the Ω∗Spin :(
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4 Lecture 4: 2023 May 4

4.1 The Adams Spectral Sequence

There is a big diagram that is for show and too hard to TEX. It is really cool and depicts the stable homotopy
groups of the spheres! That is, it depicts

lim−→
k

πn+k(Sk).

For applications to mathy physics, you don’t have to use the full machinery. Where to find introductions?
Beuadry-Cambell4, arXiv:1801.07530. This is a

hyperlink!Recall from Wednesday (Day 3): The Steenrod squares Sqi act on mod 2 chomology,

H∗(X;Z /2)

and the mod 2 Steenrod algebra,
A = ⟨Sqi : i ∈ N⟩

acts naturally on H∗(X;Z /2) but does not allow us to witness H∗(X;Z /2) as an A-algebra. Let’s think
about homological algbera in the category of A-modules. Now note that A is Z-graded with |Sqi| = i. In
particular, we can compute ExtA(M,N) for A-modules.

Remark 4.1.1. Recall that for any ring R, R-Mod(−,−) need not be an exact functor. Consequently
there is a corresponding derived functor

ExtnR(−,−) : R-Mod → Ab

which can be calculated by resolving the contravariant variable in projectives and resolving the covariant
variable in injectives. In particular, ExtnR(−,−) = Rn Hom(−,−).

TL;DR Ext is a functor built from Hom in a way that Ext takes a short exact sequence of R-modules
and produces a long exact sequence of ABelian groups in Ext (and also Ext0(−,−) ∼= Hom(−,−)).

Since A is Z-graded, Exts,tA (M,N) is bigraded where:

� s is the homological grading

� t comes from the grading of A.

In particular we get that

Exts,tA (M,N) ∼= AMod(ΣtN,M) = AMod(N [t],M)

where we regard N and M as Z-graded Abelian groups which commute with the STeenrod operations. Note
that ΣtN = N [t] is the “shift the grading by t” operator.

The (well, ‘an”) Adams spectral sequence is a spectral sequence with signature

Es,t
2 = Exts,tA (H∗(X; lZ /2),Z /2) ⇒ πs

t−s(X)∧2

where

πs
t−s(X)∧2 :=

(
lim−→
k

πt−s+k(Σ
kX)

)∧
2

is the stable homotopy group completed at 2, i.e.,

πs
t−s(X)∧2

∼= lim←−
n∈Z

πs
t−s(X)

2nπs
t−s(X)

∼= πs
t−s(X)⊗Z Z2 .

This is typically graded with grading (t− s, s) where dr moves 1 unit to the left and r units up:

4I probably misspelled a name.
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d2

d5

This is hard. Let’s do something simple and more relevant to physics. Idea: Replace πs
∗ with other

gerneralized homology theories such that E2-pages satisfies

H Z k o, k u︸ ︷︷ ︸
connectiveK-theory

, tmf, tmf1(3)

These compute stuff we want! H Z approximates ΩSO
∗ (isomorphism in degrees ≤ 3); k u approximates ΩSpinc

∗
(isomorphism in degrees ≤ 3); k o approximates ΩSpin

∗ (isomorphism in degrees ≤ 5); tmf approximates

ΩString
∗ (isomorphism in degrees ≤ 15); and unknown for tmf1(3).

Remark 4.1.2. Why would we want to compute bordism groups? Freed-Hopkins showed that reflection-
positive invertible TFTs are classified by bordism groups. This means anaolalies, SPTs are classified in
terms of bordism groups.

Example 4.1.3. Fermionic phases SPT with G-symmetry are classified by ΩSpin
∗ (BG) (under mild technical

conditions on the symmetry).

What does the Adams spectral sequence mean in physics? So in particular what is an intermpretation
fo the Adams SS data in terms of physics/invertible field theory/spins..

Now the the simplification! The Change-of-Rings Theorem says that

ExtB (B ⊗C M,N) ∼= ExtC(M,N).

For example, note that
H∗(H Z;Z /2) ∼= A⊗A[0] Z /2

so by Künneth we get
H∗(H Z∧X;Z /2) ∼= A⊗A[0] H

∗(X;Z /2)

where

A[0] =
(Z /2)[Sq1]

(Sq1)2
.

Then by applying the Change-of-Rings, we get an Adams SS with

Es,t
2 = Exts,tA[0] (H

∗(X;Z /2),Z /2) ⇒ Ht−s(X;Z)∧2

14



Likewise
H∗(k o;Z /2) = A⊗ k[1]⊗ Z /2

where
A[1] = ⟨Sq1,Sq2⟩.

There is a cool visual drawing of this algebra that I missed, but A[1] is an 8-dimensional noncommutative
algebra. Then

Es,t
2 = Exts,tA[1] (H

∗(A;Z /2),Z /2) ⇒ k ot−s(A)∧2

Similarly, for k u we get H∗(k u) = A⊗E[1] where E[1] = ⟨Q1, Q4⟩ which simplifies the story by using ExtE[1].

also H∗(tmf) = A⊗A[2] Z /2 where A[2] = ⟨Sq1,Sq2,Sq4⟩.

Example 4.1.4. Consider k u∗(M) and

Exts,tE[1](Z /2,Z /2) ⇒ k ut−s(∗).

Then we get an “Ext chart” which I’m not able to draw in time. dn = 0 always so all differentials vanish and
E2 is thus E∞ the sequence thus collapses and the extension gets hard. In this case h0 lifts to multiplication
by 2 in the characteristic zero setting while the tower of h0’s must be a Z if you know your group is finitely
generated 5. Thus

k u∗ = Z, 0,Z, 0,Z, 0, · · ·

In an Ext chart you can have differentials commute with h0-actions.

Example 4.1.5. Using the Ext chart for k o∗ we get that the differentials also collapse, Our extension
problem has the pattern of the Bott song and learned the first seven spin bordism to get ΩSpin

k
∼= k ok for

k ≤ 7.

5 Lecture 5: 2023 May 5, Revenge of the Fifth

5.1 Day 5: Twists

Yesterday: We used the Adams spectral sequence and change of rings to compute

ΩSO
∗ (X), approximated byH∗(X;Z), computed by ExtA(0)

(
H∗(X;Z /2),Z /2

)
Bordism Group Approximated by Computed by

ΩSpinc

∗ (X) k u∗(X) ExtE(1)

ΩSpin
∗ (X) k o∗(X) ExtA(1)

ΩString
∗ (X) tmf∗(X) ExtA(2)

But lots of things are missing from this story. For example, “ZTF
4 (mod 4) symmetry” T such that T is

anti-unitya, i.e., T 2 = −1)F , T 4 = 1. However, cannot write the corresponding tangential as spin but you
should get Pin+.

Remark 5.1.1. O is to SO what Pin± is to Spin but is Tring? to String? >:(

But is it the case that
Ω

Pin+
∗

?
= ΩSpin

∗ (X)

hols? Not quite... but it is true for twisted spin bordism and twisted spin bordism can be computed with
AHSS and Adams SS in nearly the same way! It’s also true for twisted SO,Spin,String...

5Otherwise you would get a Z2 — I think this appeal can be made due to the fact that Z is dense in Z2 and Z finitely
generated? This is Geoff’s comment only.
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5.2 What is Twisted Spin Bordism?

Definition 5.2.1. Pick a space X and a vector bundle V on X. An (X,V )-twisted spin structure on a
vector bundle E → M is the data of:

1. A map f : M → X;

2. A spin structure on E ⊕ f∗V → M .

Remark 5.2.2. You can define twisted orientation, twisted spinc structure, or any wtwisted G structure
for any G in the same way. The point is to twist by G-bundles!

The bordism groups of (X,V )-twisted spin structures are written

ΩSpin
∗+V (X).

Example 5.2.3 ((BU(1),Ltaut)-twisted Spin structure). Consider

Ltaut

M BU(1)
f

Now TM ⊕ f∗Ltaut is spin if and only if there is the data of a cpa line bundle in characteristic classes. The
whitney sm gives

w2(TM) = w2(L) = w2(L) (mod 2)

and c1(L) ⇐⇒ L. So a (BU(1), Ltaut)-twisted spin structure is the data of an integer lift of w2, i.e., a
Spinc structure.

Other examples:

G Twist of Spin Bordism

Pin+, w2 = 0 (B Z /2, 3 sgn)

Pin−, w2 = w2
1 (B Z /2, sgn)

Pinc, β(w2) = 0 (B Z /2, sgn)-twisted Spinc structure
Spin×{±1} Z /2n, ω2(n) = w2(β) (B2/n,C)

Spin×{±1} SU2, w2(m) = w2(E) for E an SO3 bundle (B SO3, Vtaut)

Remark 5.2.4. The twisted spin spin bordism in condesed matter says that w1 =? if and only if Gb → Z /2
is unitary or antiunitary. So w2 =? if and only if there is an extension

1 (Z /2)F Gf C3 1

The classifying space for (X,V )-twisted spin structure is

B

M BO
E

We’d like that a lift of E to be exactpyl an (X,V )-twisted spin structure on E. The answer iis we need to
write

B Spin×X

BO

Vtaut⊕(V−rank(V ))
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By the Pontryagin-Thom Theorem, we know how to access the (X,V )-twisted Spin bordism groups: they
are the homotopy groups of the Thom spectrum

Thom
(
BSpin×X,Vtaut ⊕ (V- rank(V))

)
.

But because our boundle is an extermal direct sum, i.e., a direct sum of osmething on B Spin and something
on X, the Thom spectrum factors and we learn

ΩSpin
∗+V (X)

∼=−→ ΩSpin
∗ (XV−rankV )

where the object XV−rankV is the spectrum of X and V (in the homotopy sense of spectrum).

Example 5.2.5. Whever BZ/2)3 sgn−2 is, its Spin bordism groups are equal to the Pin+ bordism of a point.

Remark 5.2.6. We can use the Thom spectrum for other types of twisted generalized cohomology theories.

We now want to feed ΩSpin
∗ (XV−rankV ) to AHSS or Adams. To do so, we need:

1. H∗(XV−rankV ;Z), H∗(XV−rankV ;Z);

2. H∗(XV−rankV ;Z /2), H∗(X
V−rankV ;Z /2);

3. The operators Sqi on the mod 2 cohomology.

All of these are not hard! For Number 2: The Thom Isomorphism Theorem states that there is an isomor-
phism

H∗(X;Z /2)
∼=−→ H∗(XV−rankV ;Z /2).

This is an isomorphism of H∗(X;Z /2)-modules and the image of 1 is what is called the Thom class.
For Number 1, the isomorphism need an oriteation to work over Z. In general, where ewe use twisted

cohomology,

H∗(X;Zw1as)
∼=−→ H∗(XV−rankV ;Z)

and then proceeds mutatis mutandis.
For number 3 we use the Wu formula to get

Sqi(U) = Uwi(V ), Sqi(Ux) =
∑

j+k=i

Uwj(V ) Sqk(U).

Example 5.2.7 (The AHSS for ΩPin+
∗ = ΩSpin

∗ (B Z /2)3 sgn−2). So from the generating equations I missed
we get the diagram:

q
Z 4 Z /2 Z /2 Z /2

3
Z /2 2 Z /2 Z /2 Z /2 Z /2 Z /2
Z /2 1 Z /2 Z /2 Z /2 Z /2 Z /2

Z 0 Z /2 Z /2 Z /2
0 1 2 3 4

Because this is a horizontal SS the differential goes up and so the is a left and up knight’s move. Now
the inclusion of the line p = 0 is the edge hom and so d2 in row 0 is an isomorphism. Geometric information
I missed says

ΩSpin
1 → Ωpin+

1

is an isomorphism and so d2 in row 1 is an isomorphism as well. We can show, however, that

ΩPin+
0 = Z /2,ΩPin+

1 = 0,ΩPin+
2 = Z /2,ΩPin+

3 =??,ΩPin+
4 =??

Another option: Adams. A drawing of the Sq1 and Sq2 actions tell us that we can modify by a twist. So we
get cool stuff I wrote by hand bout could not TEX. Allows us to deduce that

ΩPin+
3 = Z /2, ΩPin+

4 = Z /16..
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