SPECTRAL SEQUENCES PROBLEM SET 2

ARUN DEBRAY
MAY 2, 2023

(1) The loop-space-path-space fibration $\Omega X \rightarrow \mathcal{P} X \rightarrow X$, together with the identification $\Omega K(A, n) \simeq$ $K(A, n-1)$ and the contractability of $\mathcal{P}(X)$, leads to a fibration $K(A, n-1) \rightarrow * \rightarrow K(A, n)$. Use the Serre spectral sequence associated to this fibration to show that

$$
H^{*}(K(\mathbb{Z}, 3) ; \mathbb{Q}) \cong \mathbb{Q}[c] /\left(c^{2}\right), \quad|c|=3
$$

(2) Use the Serre spectral sequence for the same fibration to show that

$$
H^{*}(K(\mathbb{Z}, 4) ; \mathbb{Q}) \cong \mathbb{Q}[d], \quad|d|=4
$$

(3) A 2 -group \mathbb{G} is a group object in the 2-category of categories, characterized by the data of a group $G:=\operatorname{Obj}(\mathbb{G})$, an abelian group $A:=\operatorname{Hom}_{\mathbb{G}}(e, e)$, an action of G on A, and a class $k \in H^{3}(B G ; A)$ called the k-invariant. This data makes the classifying space of \mathbb{G} into a fiber bundle over $B G$ with fiber $B^{2} A$:

For any Eilenberg-Mac Lane space $K(A, n)$, there is a natural identification $[X, K(A, n)] \cong H^{n}(X ; A)$ given by pulling back the tautological class $t \in H^{n}(K(A, n) ; A)$ that we defined in lecture using the Hurewicz homomorphism.

Suppose that in the data for a 2 -group \mathbb{G}, G acts trivially on A, so that the Serre spectral sequence does not need local coefficients and is multiplicative. Suppose also that A is discrete, so $B^{2} A=K(A, 2)$. Show that in the Serre spectral sequence, the tautological class $t \in E_{2}^{0,2}=H^{2}(K(A, 2) ; 2)$ transgresses to $k \in H^{2}(B G ; A)$.
(4) If $A=\mathrm{U}_{1}$, so $B A=B^{2} \mathbb{Z}$, the same story takes place in one degree higher: the k-invariant is valued in $H^{4}(B G ; \mathbb{Z})$, and the tautological class in $H^{3}(K(\mathbb{Z}, 3) ; \mathbb{Z})$ transgresses to the k-invariant in the fiber bundle (0.1).

Assume $n \geq 5$. The string group String $_{n}$ is the 2-group for which $G=\operatorname{Spin}_{n}, A=\mathrm{U}_{1}$, the G-action on A is trivial, and k is the generator of $H^{4}\left(B \operatorname{Spin}_{n} ; \mathbb{Z}\right) \cong \mathbb{Z}$. There is an isomorphism $H^{*}\left(B \operatorname{Spin}_{n} ; \mathbb{Q}\right) \cong \mathbb{Q}\left[p_{1}, \ldots, p_{n}\right]$ with $\left|p_{i}\right|=4 i$. What can you determine about $H^{*}\left(B \operatorname{String}_{n} ; \mathbb{Q}\right)$?
(5) In class, we used the Serre spectral sequence of a sphere bundle to produce the Gysin long exact sequence. Suppose instead we are given a fibration

Assume for simplicity $n>1$. Use the Serre spectral sequence associated to this fibration to deduce the following exact sequences:

$$
\begin{aligned}
0 \rightarrow E_{\infty}^{0, k} & \longrightarrow H^{k}(F ; A) \xrightarrow{d_{n}} H^{k-n+1}(F ; A) \longrightarrow E_{\infty}^{n, k-n+1} \longrightarrow 0 . \\
0 & \longrightarrow E_{\infty}^{n, k-n} \longrightarrow H^{k}(E ; A) \longrightarrow E_{\infty}^{0, k} \longrightarrow 0
\end{aligned}
$$

Paste these two together to obtain the Wang long exact sequence:

$$
\cdots \rightarrow H^{k}(F ; A) \rightarrow H^{k-n+1}(F ; A) \rightarrow H^{k+1}(E ; A) \rightarrow H^{k+1}(F) \rightarrow \cdots
$$

(6) The Wu manifold is the quotient $\mathrm{SU}_{3} / \mathrm{SO}_{3}$, which is a compact orientable smooth manifold. There is a diffeomorphism $\mathrm{SO}_{3} \cong \mathbb{R} \mathbb{P}^{3}$, meaning $H^{*}\left(\mathrm{SO}_{3} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2[x] /\left(x^{4}\right)$. Describe $H^{*}\left(\mathrm{SU}_{3} / \mathrm{SO}_{3} ; \mathbb{Z} / 2\right)$. Can you compare the map of Serre spectral sequences for the fibrations $\mathrm{SO}_{3} \rightarrow \mathrm{SU}_{3} \rightarrow \mathrm{SU}_{3} / \mathrm{SO}_{3}$ with the universal SO_{3}-bundle $\mathrm{SO}_{3} \rightarrow \mathrm{ESO}_{3} \rightarrow \mathrm{BSO}_{3}$ to determine some characteristic classes of the principal SO_{3}-bundle $\mathrm{SU}_{3} \rightarrow \mathrm{SU}_{3} / \mathrm{SO}_{3}$?

