SPECTRAL SEQUENCES PROBLEM SET 3

ARUN DEBRAY MAY 3, 2023

- Recall that H*(CPⁿ; Z) ≅ Z[c]/(cⁿ⁺¹) with |c| = 2. This and the universal coefficient theorem imply H*(CPⁿ; Z/2) ≅ Z/2[c]/(cⁿ⁺¹), where c̄ := c mod 2. Determine Sq(c̄), Sq(c̄²), and Sq(c̄³).
 Similarly, if k is even, the mod 2 cohomology of the lens space L²ⁿ⁻¹_k is H*(L²ⁿ⁻¹_k; Z/2) ≅ Z/2[x, y]/(x², yⁿ), with |x| = 1 and |y| = 2, where y is the pullback of c̄ ∈ H²(CPⁿ⁻¹; Z/2) via the quotient L²ⁿ⁻¹_k → CPⁿ⁻¹ from the first problem set. (How much of this can you see from the Second set of th Serre spectral sequence? What changes if k is odd?) Determine Sq(x) and Sq(y).
- (3) Use the Atiyah-Hirzebruch spectral sequence to show that $K^*(SU_3) \cong H^*(SU_3; \mathbb{Z}) \otimes K^*(pt)$. (Recall $H^*(SU_3; \mathbb{Z}) \cong \mathbb{Z}[c_3, c_5]/(c_3^2, c_5^2)$ with $|c_i| = i$.)
- (4) Try running the Atiyah-Hirzebruch spectral sequence for $K^*(\mathbb{RP}^3)$ and $K^*(\mathbb{RP}^4)$. Are there any differentials? Are there extension problems? For reference: $H^*(\mathbb{RP}^3;\mathbb{Z}) \cong \mathbb{Z}[x,y]/(2x,x^2,y^2,xy)$ with |x| = 2 and |y| = 3, and $H^*(\mathbb{RP}^4; \mathbb{Z}) \cong \mathbb{Z}[x]/(2x, x^3)$ with |x| = 2. (5) Compute $\Omega_k^{SO}(B\mathbb{Z}/2)$ for $k \leq 6$. (Recall $H_*(B\mathbb{Z}/2; \mathbb{Z})$ consists of a \mathbb{Z} in degree 0 together with a $\mathbb{Z}/2$
- in every positive odd degree, and $H_*(B\mathbb{Z}/2;\mathbb{Z}/2)$ consists of a $\mathbb{Z}/2$ in every nonnegative degree, and that Ω^{SO}_* begins with Z in degrees 0 and 4, $\mathbb{Z}/2$ in degree 5, and no other summands below degree 8.) Compare $\widetilde{\Omega}_{k}^{\text{SO}}(B\mathbb{Z}/2)$ and Ω_{k-1}^{O} — their similarity is not a coincidence! (6) Use the Atiyah-Hirzebruch spectral sequence to obtain a long exact sequence for supercohomology:

$$\cdots \to H^k(X;\mathbb{Z}) \to \mathrm{SH}^k(X) \to H^{k-2}(X;\mathbb{Z}/2) \xrightarrow{\mathrm{BockoSq}^2} H^{k+1}(X;\mathbb{Z}) \to \cdots$$