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(1) Determine theA(0)-module structures onH∗(RP2;Z/2) andH∗(RP∞;Z/2). (RecallH∗(RPn;Z/2) ∼=
Z/2[x]/(xn+1) and H∗(RP∞;Z/2) ∼= Z/2[x], with |x| = 1 in both cases.)

(2) Use the A(0)-module structures from the previous problem, together with the Ext charts for A(0)-
modules in the reference info below, to run the Adams spectral sequence over A(0) to compute
H∗(RP2;Z)∧2 and H∗(RP∞;Z)∧2 .

(3) Let P 2 denote the E(1)-module consisting of two Z/2 summands in degrees 0 and 1 joined by a
nonzero Sq1-action from degree 0 to degree 1. Then ΣP 2 ∼= H̃∗(RP2;Z/2). The short exact sequence
of E(1)-modules ΣZ/2→ P 2 → Z/2, drawn line this:

(0.1)
Σ2Z/2Z P 2 Z/2Z

induces a long exact sequence in ExtE(1)(–,Z/2). Run this long exact sequence (draw the Ext chart!)
to show that

ExtE(1)(P 2;Z/2) ∼= Z/2[v1],
where v1 ∈ Ext1,3. See the reference information below for information on the long exact sequence in
Ext.

(4) Use the Ext computation from the previous problem to run the Adams spectral sequence over E(1)
computing ku∗(RP2). Can you infer some spinc bordism groups of RP2?

(5) Try repeating the previous two questions over A(1) instead of E(1), and computing ko∗(RP2) and
ΩSpin
∗ (RP2) (the latter in degrees 7 and below).

1. Reference information

Some modules and Ext groups:
• A(0) = 〈Sq1〉 = Z/2[Sq1]/((Sq1)2). H∗(HZ;Z/2) ∼= A⊗A(0) Z/2, so by the change-of-rings theorem

there is an Adams spectral sequence
Es,t2 = ExtA(0)(H∗(X;Z/2),Z/2) =⇒ Ht−s(X;Z)∧2 .

ExtA(0)(A(0),Z/2) consists of a single Z/2 at (s, t) = (0, 0); ExtA(0)(Z/2,Z/2) ∼= Z/2[h0] with
h0 ∈ Ext1,1. The map ΩSO

k (X)→ Hk(X;Z) is an isomorphism in degrees 3 and below.
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Figure 1. Left: common A(0)-modules. Right: ExtA(0)(Z/2,Z/2) ∼= Z/2[h0] with h0 ∈ Ext1,1.
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• E(1) = 〈Q0, Q1〉 = Z/2[Q0, Q1]/(Q2
0, Q

2
1), whereQ0 = Sq1 andQ1 = Sq1Sq2+Sq2Sq1. H∗(ku;Z/2) ∼=

A⊗E(1) Z/2, so by the change-of-rings theorem there is an Adams spectral sequence

Es,t2 = ExtE(1)(H∗(X;Z/2),Z/2) =⇒ kut−s(X)∧2 .
ExtE(1)(E(1),Z/2) consists of a single Z/2 at (s, t) = (0, 0); ExtE(1)(Z/2,Z/2) ∼= Z/2[h0, v1] with
h0 ∈ Ext1,1 and v1 ∈ Ext1,3. The map ΩSpinc

k (X) → kuk(X) is an isomorphism in degrees 3 and
below.
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Figure 2. Left: common E(1)-modules. Right: ExtE(1)(Z/2,Z/2) ∼= Z/2[h0, v1] with
h0 ∈ Ext1,1 and v1 ∈ Ext1,3.

• A(1) = 〈Sq1,Sq2〉, or explicitly
A(1) ∼= Z/2〈Sq1,Sq2〉/((Sq1)2 = 0,Sq2Sq2 = Sq1Sq2Sq1,Sq1Sq2Sq1Sq2 = Sq2Sq1Sq2Sq1,Sq2Sq2Sq1 = 0)

(it’s far easier to think of this in terms of the picture Figure 3). H∗(ko;Z/2) ∼= A⊗A(1) Z/2, so by
the change-of-rings theorem there is an Adams spectral sequence

Es,t2 = ExtA(1)(H∗(X;Z/2),Z/2) =⇒ kot−s(X)∧2 .
ExtA(1)(A(1),Z/2) consists of a single Z/2 at (s, t) = (0, 0);

ExtA(1)(Z/2,Z/2) ∼= Z/2[h0, h1, v, w]/(h0h1, h
3
1, vh1, h

2
0w − h2

1),

with h0 ∈ Ext1,1 and h1 ∈ Ext1,2, v ∈ Ext3,7, and w ∈ Ext4,12 (it’s far easier to think of this in terms
of the picture Figure 3). The map ΩSpin

k (X)→ kok(X) is an isomorphism in degrees 7 and below.

Z/2 A(1)

Sq1Sq2

s ↑
t− s→ 0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6

1

h0 h1

v

w

Figure 3. Left: common A(1)-modules. Right: ExtA(1)(Z/2,Z/2).

If B is a graded Z/2-algebra and 0 → L → M → N is a short exact sequence of B-modules, there is a
long exact sequence
(1.1)
· · · Exts,tB (N,Z/2) Exts,tB (M,Z/2) Exts,tB (L,Z/2) Exts+1,t

B (N,Z/2) · · ·δ
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This is a common way to compute ExtB(M,Z/2) in terms of ExtB(L,Z/2) and ExtB(N,Z/2), which usually
are simpler.

For example, let Cη denote the A(1)-module which consists of two Z/2 summands in degrees 0 and 2,
joined by Sq2. Then there is a short exact sequence of A(1)-modules

(1.2a) 0 Σ2Z/2Z Cη Z/2Z 0,

which looks like this:

(1.2b)

Σ2Z/2Z Cη Z/2Z

To run the long exact sequence in Ext for 0→ L→M → N → 0, put ExtB(L,Z/2) and ExtB(N,Z/2) into
the same Adams chart. The boundary maps in the LES have the same degree as if they were d1s (i.e. one
unit to the left, one unit upwards). The boundary maps commute with the action of ExtA(1)(Z/2,Z/2), e.g.
they commute with the actions of h0 and h1 (the vertical and diagonal lines).

For ExtA(1)(Cη,Z/2), we begin by putting ExtA(1)(Σ2Z/2,Z/2) and ExtA(1)(Z/2,Z/2) in one chart, which
we draw in Figure 4, top. Most boundary maps in the LES are trivial for degree reasons; we draw the four
that aren’t.

To evaluate the boundary maps: because the long exact sequence commutes with the action of Ext(Z/2Z),
the three dashed boundary maps are determined by the solid boundary map, via the actions of h1, w, and
h1w. We will show the solid boundary map is an isomorphism, so that the dashed boundary maps are too.

To show the solid boundary map is an isomorphism, it suffices by exactness to show that Ext0,2(Cη) = 0,
since we already know Ext1,2(Σ2Z/2Z) = 0. To show Ext0,2(Cη) vanishes, use that it is identified with
HomA(1)(Cη,Σ2Z/2Z), which vanishes: since Cη is a cyclic A(1)-module, maps out of Cη are determined by
their values on the generator, which is in degree 0; since Σ2Z/2Z has no nonzero elements in degree 0, a map
Cη → Σ2Z/2Z must vanish. This finishes the calculation; we draw the final answer in Figure 4, bottom.
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Figure 4. Top: the long exact sequence in Ext associated to the short exact sequence of
A(1)-modules (1.2). The solid and dashed arrows are boundary maps. Bottom: Ext(Cη) as
calculated by this long exact sequence. The dashed lines indicate h0-actions not visible to
the long exact sequence, which must be calculated another way.
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