Fusion categories and TQFT: Problem Set 0

Learning Objectives

- Get familiar with the definition, properties, and various data types of a fusion ring; get comfortable working with small examples.
- Practice the most basic way to construct new fusion rings from old, namely the (Deligne-Kelley) product.
- Begin to appreciate how fusion category theory is connected to linear algebra, abstract algebra, and algebraic number theory.

Review

Definition 1. A fusion ring $(F, \otimes, 1, L)$ is a unital ring $(F, \otimes, 1)$ which is free as a \mathbb{Z}-module with finite basis $L \subset F$ together with an involution $\star: L \rightarrow L$ that lifts to an anti-involution on F satisfying

- $1 \in L$ and $1^{*}=1$,
- $a \otimes b=\sum_{c \in L} N_{a b}^{c} c$ with $N_{a b}^{c} \in \mathbb{Z}_{\geq 0}$ for all $a, b \in L$
- $N_{a b}^{1}=N_{b a}^{1}=\delta_{a^{*} b}$ for all $a, b \in L$.

A fusion ring is called multiplicity-free if $N_{a b}^{c} \in\{0,1\}$ for all $a, b, c \in L$.

Fusion ring invariants and properties

Recall that the rank of (F, L, \otimes) is the number of elements in the basis set $|L|$ and the Frobenius-Perron dimension of $a \in L$ is given by Frobenius-Perron eigenvalue of the matrix $\left[N_{a}\right]_{b c}:=N_{a b}^{c}$.

Ways to present a fusion ring

There are several different ways to encode the data of a fusion ring: via the fusion matrices $\left\{N_{a}\right\}_{a \in L}$, the fusion rules $N_{a b}^{c} \in \mathbb{Z}_{\geq 0}$, or the fusion table whose (a, b) entry is the nonzero entries of the vector [$\left.N_{a}\right]_{b_{-}}$. The function FPdim : $L \rightarrow \mathbb{C}$ that sends $a \mapsto \operatorname{FPdim}(a)$ is a ring homomorphism.

Example

It is standard to write the basis of the Ising fusion ring as $L=\{1, \sigma, \psi\}$. Ising has rank 3 and FrobeniusPerron dimensions $1, \sqrt{2}, 1$.

Fusion matrices

$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$

Fusion rules

$\left\{\begin{array}{l}\sigma \otimes \sigma=1 \oplus \psi \\ \sigma \otimes \psi=\psi \otimes \sigma=\sigma \\ \psi \otimes \psi=1\end{array}\right.$

	1	σ	ψ
1	1	σ	ψ
σ	σ	$1 \oplus \psi$	σ
ψ	ψ	σ	1

Exercises

1. Consider the rank 2 fusion ring with fusion rule $\tau \otimes \tau=1 \oplus \tau$.
(a) Can you express the coefficient of τ in $\tau^{\otimes n}$ in terms of n ?
(b) Compute the Frobenius-Perron dimension of τ.
2. Describe all multiplicity-free fusion rings of rank 3 which contain a non-self dual basis element.
3. Let $\left(F_{1}, L_{1}, \otimes_{1}\right)$ and $\left(F_{2}, L_{2}, \otimes_{2}\right)$ be fusion rings. Check that $L=L_{1} \times L_{2}$ - which we will write as $L=\{a \boxtimes b\}_{a \in L_{1}, b \in L_{2}}$ - gives the free \mathbb{Z}-module on L the structure of a fusion ring with respect to the multiplication \otimes on L given by $\left(a_{1} \boxtimes b_{1}\right) \otimes\left(a_{2} \boxtimes b_{2}\right)=\sum_{c_{1} \in L_{1}, c_{2} \in L_{2}} N_{a_{1} b_{1}}^{c_{1}} N_{a_{2} b_{2}}^{c_{2}} c_{1} \boxtimes c_{2}$.
4. Fill in the blanks in the fusion table for the fusion ring Fib \boxtimes Ising.

	$1 \boxtimes 1$	$1 \boxtimes \sigma$	$1 \boxtimes \psi$	$\tau \boxtimes 1$	$\tau \boxtimes \sigma$	$\tau \boxtimes \psi$
$1 \boxtimes 1$	$1 \boxtimes 1$	$1 \boxtimes \sigma$	$1 \boxtimes \psi$	$\tau \boxtimes 1$	$\tau \boxtimes \sigma$	$\tau \boxtimes \psi$
$1 \boxtimes \sigma$	$1 \boxtimes \sigma$					
$1 \boxtimes \psi$	$1 \boxtimes \psi$					
$\tau \boxtimes 1$	$\tau \boxtimes 1$					
$\tau \boxtimes \sigma$	$\tau \boxtimes \sigma$					
$\tau \boxtimes \psi$	$\tau \boxtimes \psi$					

5. Prove that $\operatorname{FPdim}(X \boxtimes Y)=\operatorname{FPdim}(X) \operatorname{FPdim}(Y)$.
6. How do you think you should define a fusion module, i.e. a module over a fusion ring?
