Fusion categories and TQFT: Problem Set 0

Learning Objectives

- Get familiar with the definition, properties, and various data types of a fusion ring; get comfortable working with small examples.
- Practice the most basic way to construct new fusion rings from old, namely the (Deligne-Kelley) product.
- Begin to appreciate how fusion category theory is connected to linear algebra, abstract algebra, and algebraic number theory.

Review

Definition 1. A fusion ring $(F, \otimes, 1, L)$ is a unital ring $(F, \otimes, 1)$ which is free as a \mathbb{Z} -module with finite basis $L \subset F$ together with an involution $\star : L \to L$ that lifts to an anti-involution on F satisfying

- $1 \in L \text{ and } 1^* = 1$,
- $a \otimes b = \sum_{c \in L} N_{ab}^c c$ with $N_{ab}^c \in \mathbb{Z}_{\geq 0}$ for all $a, b \in L$
- $N_{ab}^1 = N_{ba}^1 = \delta_{a^*b}$ for all $a, b \in L$.

A fusion ring is called *multiplicity-free* if $N_{ab}^c \in \{0, 1\}$ for all $a, b, c \in L$.

Fusion ring invariants and properties

Recall that the *rank* of (F, L, \otimes) is the number of elements in the basis set |L| and the Frobenius-Perron dimension of $a \in L$ is given by Frobenius-Perron eigenvalue of the matrix $[N_a]_{bc} := N_{ab}^c$.

Ways to present a fusion ring

There are several different ways to encode the data of a fusion ring: via the *fusion matrices* $\{N_a\}_{a \in L}$, the *fusion rules* $N_{ab}^c \in \mathbb{Z}_{\geq 0}$, or the fusion table whose (a, b) entry is the nonzero entries of the vector $[N_a]_{b_-}$. The function FPdim : $L \to \mathbb{C}$ that sends $a \mapsto \text{FPdim}(a)$ is a ring homomorphism.

Example

It is standard to write the basis of the Ising fusion ring as $L = \{1, \sigma, \psi\}$. Ising has rank 3 and Frobenius-Perron dimensions 1, $\sqrt{2}$, 1.

Fusion matrices	Fusion rules	Fusion table		
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$	$ \begin{cases} 1\\ 0\\ 0 \end{cases} \begin{cases} \sigma \otimes \sigma = 1 \oplus \psi\\ \sigma \otimes \psi = \psi \otimes \sigma = \sigma\\ \psi \otimes \psi = 1 \end{cases} $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} \sigma \\ \hline \sigma \\ 1 \oplus \psi \\ \sigma \end{array}$	$\frac{\psi}{\varphi}$

Exercises

- 1. Consider the rank 2 fusion ring with fusion rule $\tau \otimes \tau = 1 \oplus \tau$.
 - (a) Can you express the coefficient of τ in $\tau^{\otimes n}$ in terms of n?
 - (b) Compute the Frobenius-Perron dimension of τ .
- 2. Describe all multiplicity-free fusion rings of rank 3 which contain a non-self dual basis element.
- 3. Let (F_1, L_1, \otimes_1) and (F_2, L_2, \otimes_2) be fusion rings. Check that $L = L_1 \times L_2$ which we will write as $L = \{a \boxtimes b\}_{a \in L_1, b \in L_2}$ gives the free \mathbb{Z} -module on L the structure of a fusion ring with respect to the multiplication \otimes on L given by $(a_1 \boxtimes b_1) \otimes (a_2 \boxtimes b_2) = \sum_{c_1 \in L_1, c_2 \in L_2} N_{a_1 b_1}^{c_1} N_{a_2 b_2}^{c_2} c_1 \boxtimes c_2$.
- 4. Fill in the blanks in the fusion table for the fusion ring Fib \boxtimes Ising.

	$1 \boxtimes 1$	$1 \boxtimes \sigma$	$1 \boxtimes \psi$	$\tau \boxtimes 1$	$\tau \boxtimes \sigma$	$\tau \boxtimes \psi$
1 🛛 1	1 🛛 1	$1 \boxtimes \sigma$	$1 \boxtimes \psi$	$\tau \boxtimes 1$	$\tau \boxtimes \sigma$	$\tau \boxtimes \psi$
$1 \boxtimes \sigma$	$1 \boxtimes \sigma$					
$1 \boxtimes \psi$	$1 \boxtimes \psi$					
$\tau \boxtimes 1$	$\tau \boxtimes 1$					
$\tau \boxtimes \sigma$	$\tau \boxtimes \sigma$					
$\tau \boxtimes \psi$	$\tau \boxtimes \psi$					

- 5. Prove that $FPdim(X \boxtimes Y) = FPdim(X) FPdim(Y)$.
- 6. How do you think you should define a fusion module, i.e. a module over a fusion ring?

Please report any errors to me at cdelaney@math.berkeley.edu.