Fusion categories and TQFT: Problem Set 2

Learning Objectives

- Get experience working with string diagrams representing morphisms in a monoidal category.
- Get experience working with trivalent graphs representing morphisms in a skeletal fusion category and their associated numerical data.

Review

All of our diagrams are read from the top down unless indicated otherwise by arrows.

String diagrams in a monoidal category

Recall how to compose and take the tensor product of morphisms in terms of string diagrams:

We also have cups and caps representing the evaluations and coevaluation morphisms eval $_{X}: X^{*} \otimes X \rightarrow \mathbb{1}$ and coeval ${ }_{X}: \mathbb{1} \rightarrow X \otimes X^{*}$, respectively:

Partial summary of trivalent graphical calculus in a skeletal fusion category

We will assume that our skeletal fusion category is multiplicity-free.
Reversing orientation of edges dualizes the edge label:

$$
\downarrow a=\uparrow a^{*}
$$

"Bubble-popping":

The F-move:

Exercises

1. Let \mathcal{C} be a monoidal category and let $f \in \operatorname{Hom}(X, Y)$. The (left) dual $f^{*} \in \operatorname{Hom}\left(Y^{*}, X^{*}\right)$ of f is given by

$$
f^{*}=\left(\operatorname{eval}_{Y} \otimes_{X^{*}}\right) \circ\left(\left(\operatorname{id}_{Y^{*}} \otimes f\right) \otimes \operatorname{id}_{X^{*}}\right) \circ \alpha_{Y^{*}, X, X^{*}}^{-1} \circ\left(\operatorname{id}_{Y^{*}} \otimes \operatorname{coeval}_{X}\right)
$$

Draw the string diagram that represents f^{*} assuming that \mathcal{C} is strict.
2. Compute the value of the term $\Theta(a, b, c)$ that appears in the Turaev-Viro state sum formula in terms of the quantum dimensions d_{a}, where

3. Recall that the quantum dimension of a simple object in a spherical fusion category \mathcal{C} is given by $d_{X}=\operatorname{Tr}\left(\mathrm{id}_{X}\right)$. Let's assume that \mathcal{C} is skeletal and moreover that its pivotal coefficients t_{a} are all trivial. Use the graphical calculus for skeletal spherical fusion categories to find a formula for d_{a} in terms of the F-symbols.
Hints: Start with the picture for the quantum dimension of a (it looks the same in any spherical fusion category, skeletal or otherwise). You'll need to start by inserting a strand labeled by the identity; think of making your picture look like the picture for $\Theta(a, b, c)$ in Exercise 2 above. Then remember that your trivalent diagrams live on the surface of a sphere and pay close attention to the orientation of edges.
4. Recall the definition of a (left) \mathcal{C}-module category, either from Problem Set 1 Exercise 2 or from Definition 7.1.1 in Tensor Categories.
Assume that \mathcal{C} is multiplicity-free and that the structure constants that define the module action on the level of isomorphism classes of objects in \mathcal{C} and \mathcal{M} are multiplicity-free (see Problem Set 0 Exercise 6 or Definition 3.4.1 in Tensor Categories). Skeletalizing the (left) module associators

$$
\mu_{X, Y, M}:(X \otimes Y) \triangleright M \rightarrow X \otimes(Y \triangleright M)
$$

gives " M-symbols" where

Note that $a, b, c \in L$ while $m, n, p \in M$, where L is our chosen basis of the fusion ring of \mathcal{C} and M is the chosen basis of the fusion module of \mathcal{M}.
Derive the (left) module pentagon equations. (It should involve an instance of the F-symbols!)

