## SPT AND MANIFOLD INVARIANTS: EXERCISE 1

MENG GUO

1. Prove that bordism is an equivalence relation.
2. Show that diffeomorphic $d$-manifolds are bordant.
3. Prove that the mod 2 Euler number defines a bordism invariant $\Omega_{d}(O) \rightarrow \mathbb{Z} / 2 \mathbb{Z}$. (Show it is additive under disjoint union and zero if a manifold is bordant to empty) On the other hand, show that the integer-valued Euler number is not generally a bordism invariant. Give an couterexample by a manifold bordant to empty set but with nonzero Euler number. Euler number is in fact stably almost complex bordism invariant.
4. Let me write down the definition of $p_{i}$, the $i$ th Pontryagin class of a real vector bundle $V$ over a manifold $M: p_{i}(V)=(-1)^{i} c_{2 i}(V \otimes \mathbb{C}) \in H^{4 i}(M, \mathbb{Z})$. In fact, Chern classes of $V \otimes \mathbb{C}$ of odd degrees are of 2 torsions.
5. For a $2 n$ real vector bundle $V$ over X , there exists $Y \rightarrow X$ such that the induced cohomology is injective and the pullback of $V \otimes \mathbb{C}$ can always split as

$$
L_{1} \oplus \overline{L_{1}} \oplus L_{n} \oplus \overline{L_{n}}
$$

$L_{i}$ are line bundles. You can show that $c\left(L_{i} \oplus \overline{L_{i}}\right)=\left(1+x_{i}\right)\left(1-x_{i}\right), x_{i}=c_{1}\left(L_{i}\right) \in H^{2}(X, \mathbb{Z}) . p(V)=$ $\prod\left(1+x_{i}^{2}\right)$. For a $4 k$ manifold, define $p(M)=p(T M)$. Write $\hat{A}=\prod \frac{x_{i} / 2}{\sinh \left(x_{i} / 2\right)}$. In fact, you can write $\hat{A}=1-\frac{p_{1}}{24}+\cdots \in \mathbb{Q}\left[p_{1}, p_{2}, \cdots\right]$. In particular, Write $\hat{A}(M)$ or $\hat{A}_{4 k}(M)=\left\langle\hat{A}_{4 k},[M]\right\rangle \in \mathbb{Q}: \Omega_{4 k}(S O) \rightarrow \mathbb{Q}$. If $M \in \Omega_{4 k}(\operatorname{Spin})$, it lies in $\mathbb{Z}$. Show that $\hat{A}(M)$ is bordism invariant.
6. Here is a simpler question of last one to show that $p_{1}$ is bordism invariant. Given a 4 -manifold $M$, let $p_{1}(M) \in H^{4}(M)$ denote its first Pontrjagin class. If $M$ is oriented, we can pair that with the fundamental class to obtain $\left\langle p_{1}(M),[M]\right\rangle \in \mathbb{Z}$. It is (oriented) bordism invariant. (Hints: It's additive under disjoint union; if $M$ is boundary of 5-dimensional manifold W , prove that $\left\langle p_{1}(M),[M]\right\rangle=0$ by consider the exact sequence $H^{4}(W) \rightarrow H^{4}(M) \rightarrow H^{5}(W, M), p_{1}(W)$ maps to $\left.p_{1}(M)\right)$
7. In fact, all product of $p_{i}, i \in I$ ( $I$ can contains repeated index $i$ ) of degree $4 n(I)=4 \sum i$ and evaluated on a oriented $4 n(I)$ manifold is a bordism invariant.
8. Definition of $\operatorname{Spin}_{n}, \operatorname{Pin}_{n}^{+}, \operatorname{Pin}_{n}^{-}$and $\operatorname{Spin}_{n}^{c}$.

