SPT AND MANIFOLD INVARIANTS: EXERCISE 2

MENG GUO

- 1. Show that the way we define finite gauge theory gives a symmetric monoidal functor, i.e. gives a T(Q)FT.
- 2. Here is the definition of Euler theory: Fix a nonzero complex number λ . define that $F(Y) = \mathbb{C}$ for any closed (n-1)manifold. For a **closed** bordism X (bordism from \emptyset to \emptyset , F(X) is $\lambda^{\chi(X)}$ where $\chi(X)$ is the Euler number of X. For a geneal bordism X from Y_0 to Y_1 , $F(X) = \lambda^{\chi(X) \chi(Y_0)}$. Show that it defines a T(Q)FT. (the Euler characteristic satisfies a gluing formula)
- 3. Prove the category of duality data for an object *y* is either empty or all hom sets has unique element in the category.
- 4. A vector space is dualizable if and only if it is finite dimension.
- 5. $F : \mathcal{B} \to \mathcal{C}$ symmetric monoidal functor. If *y* is dualizable, then F(y) is dualizable.
- 6. $\eta : F \to G$ natural transformation of symmetric monoidal functors. If y is dualizable, then $\eta(y)$ is an isomorphism.