SPT AND MANIFOLD INVARIANTS: EXERCISE 3

MENG GUO

1. Given a Lie group Convince yourself that a G_{n} structure on a n-dimensional manifold M is equivalent to a choice of a G_{n} principle bundle P over M such that $P \times_{G_{n}} O_{n}$ is isomorphic to the orthonormal frame bundle of tangent bundle $\operatorname{Fr}(T M)$.
2. Exhibit a natural homeomorphism $X^{V \oplus \mathbb{R}} \stackrel{\cong}{\leftrightarrows} \Sigma X^{V}$.
3. Definition/construction of Pin group:
(i) 1st definition: For a vector space (over \mathbb{R}) with quadratic form $q: V \rightarrow \mathbb{R}$, define the Clifford algebra

$$
\mathrm{Cl}(V)=T(V) /\left(v^{2}-q(v) \cdot 1\right) .
$$

$T(E)=\mathbb{R} \oplus V \oplus V \otimes V \oplus \cdots$ be the tensor algebra over V and $\left(v^{2}-q(v) \cdot 1\right)$ denote the two-sided ideal generated by the elements $v \otimes v-q(v) \cdot 1$ in $T(V)$. Multiplication is given by tensor, we just write $v \cdot w$ or $v w$ to denote the multiplication $v \otimes w \in \mathrm{Cl}(V)$.
Consider the subset of $\mathrm{Cl}(V)$ consisting of all products $v_{1} v_{2} \cdots v_{k}$ of unit vectors $v_{i} \in \mathbb{R}^{n}$ where $k \geqslant 0$. (if $k=0$, it means ± 1). Denote it by $\operatorname{Pin}(V)$. It is a group whose multiplication is just multiplication in $\mathrm{Cl}(V)$. There is a surjection of groups:

$$
\operatorname{Pin}(V) \xrightarrow{\rho} O(V)
$$

sending $v_{1} v_{2} \cdots v_{k}$ to the $\gamma_{1} \cdots \gamma_{k}$ where γ_{i} denotes the reflection in the hyperplane perpendiculular to v_{i}. Check that the kernel is $\{ \pm 1\}$ and it lies in the center of $\operatorname{Pin}(V)$. If regard $x \in V \subset \mathrm{Cl}(V)$, check that $\rho\left(v_{i}\right)=-v_{i} x v_{i}$ and

$$
\rho\left(v_{1} \cdots v_{k}\right)=(-1)^{k} v_{1} \cdots v_{k} x v_{k} \cdots v_{1}
$$

If take $V=\mathbb{R}^{n}$ with positive definite quadratic form, it is $\operatorname{Pin}_{n}^{+}$. If take $V=\mathbb{R}^{n}$ with negative definite, it is $\operatorname{Pin}_{n}^{-}$.
(ii) 2nd definition: An central extension of O_{n} by $\mathbb{Z} / 2$ is classified by an element in $H^{2}\left(B O_{n} ; \mathbb{Z} / 2\right)=$ $\mathbb{Z} / 2\left[w_{1}, \cdots, w_{n}\right] .{ }_{1}, \cdots, w_{n}$ are the universal Stiefel Whitney classes. $\operatorname{Pin}_{n}^{+}$corresponds to the element w_{2} while $\operatorname{Pin}_{n}^{-}$corresponds to the element w_{1}.
4. This question calculates $\operatorname{Pin}_{1}^{ \pm}$and $\operatorname{Pin}_{2}^{ \pm}$:
(i) Use two definition to show that $\operatorname{Pin}_{1}^{+}=\mathbb{Z} / 2 \times \mathbb{Z} / 2$ while $\operatorname{Pin}_{1}^{-}=\mathbb{Z} / 4$
(ii) Notice that $\mathrm{Cl}(V) \cong \mathbb{R}[x] / x^{2}$ if $V=\left(\mathbb{R}^{2},+\right)$ and $\mathrm{Cl}(V) \cong \mathbb{C}$ if $V=\left(\mathbb{R}^{2},-\right)$. Compute $\operatorname{Pin}_{2}^{ \pm}$as a subgroup of these.
(iii) Compute the preimage of dihedral group $D_{n} \subset O_{2}$. In Pin_{2}^{+}, it is $D_{2 n}$ while in Pin_{2}^{-}, it is $D_{2 n}$ dicyclic group.
5. Remark: In Q3, if the number k to be even, then the image of ρ is $S O(V)$. The subset is $\operatorname{Spin}(\mathrm{V})$ as a subgroup of $\operatorname{Pin}(V)$ and an central extension of $S O(V)$ by $\{ \pm 1\}$ corresponding to $w_{2} \in H^{2}\left(B S O_{n}, \mathbb{Z} / 2\right)$.

