SPT AND MANIFOLD INVARIANTS: EXERCISE 3

MENG GUO

- 1. Given a Lie group Convince yourself that a G_n structure on a *n*-dimensional manifold M is equivalent to a choice of a G_n principle bundle P over M such that $P \times_{G_n} O_n$ is isomorphic to the orthonormal frame bundle of tangent bundle Fr(TM).
- 2. Exhibit a natural homeomorphism $X^{V \oplus \underline{\mathbb{R}}} \xrightarrow{\cong} \Sigma X^V$.
- 3. Definition/construction of Pin group:
 - (i) 1st definition: For a vector space (over \mathbb{R}) with quadratic form $q: V \to \mathbb{R}$, define the Clifford algebra

$$\operatorname{Cl}(V) = T(V)/(v^2 - q(v) \cdot 1).$$

 $T(E) = \mathbb{R} \oplus V \oplus V \otimes V \oplus \cdots$ be the tensor algebra over V and $(v^2 - q(v) \cdot 1)$ denote the two-sided ideal generated by the elements $v \otimes v - q(v) \cdot 1$ in T(V). Multiplication is given by tensor, we just write $v \cdot w$ or vw to denote the multiplication $v \otimes w \in Cl(V)$.

Consider the subset of Cl(V) consisting of all products $v_1v_2\cdots v_k$ of unit vectors $v_i \in \mathbb{R}^n$ where $k \ge 0$. (if k = 0, it means ± 1). Denote it by Pin(V). It is a group whose multiplication is just multiplication in Cl(V). There is a surjection of groups:

$$\operatorname{Pin}(V) \xrightarrow{\rho} O(V)$$

sending $v_1v_2\cdots v_k$ to the $\gamma_1\cdots \gamma_k$ where γ_i denotes the reflection in the hyperplane perpendiculular to v_i . Check that the kernel is $\{\pm 1\}$ and it lies in the center of Pin(V). If regard $x \in V \subset Cl(V)$, <u>check</u> that $\rho(v_i) = -v_i x v_i$ and

$$\rho(v_1 \cdots v_k) = (-1)^k v_1 \cdots v_k x v_k \cdots v_1$$

If take $V = \mathbb{R}^n$ with positive definite quadratic form, it is Pin_n^+ . If take $V = \mathbb{R}^n$ with negative definite, it is Pin_n^- .

- (ii) 2nd definition: An central extension of O_n by $\mathbb{Z}/2$ is classified by an element in $H^2(BO_n; \mathbb{Z}/2) =$ $\mathbb{Z}/2[w_1, \cdots, w_n]$. 1, \cdots, w_n are the universal Stiefel Whitney classes. Pin⁺_n corresponds to the element w_2 while Pin_n^- corresponds to the element w_1 .
- 4. This question calculates Pin_1^{\pm} and Pin_2^{\pm} :

 - (i) Use two definition to show that $\operatorname{Pin}_1^+ = \mathbb{Z}/2 \times \mathbb{Z}/2$ while $\operatorname{Pin}_1^- = \mathbb{Z}/4$ (ii) Notice that $\operatorname{Cl}(V) \cong \mathbb{R}[x]/x^2$ if $V = (\mathbb{R}^2, +)$ and $\operatorname{Cl}(V) \cong \mathbb{C}$ if $V = (\mathbb{R}^2, -)$. Compute $\operatorname{Pin}_2^{\pm}$ as a subgroup of these.
 - (iii) Compute the preimage of dihedral group $D_n \subset O_2$. In Pin_2^+ , it is D_{2n} while in Pin_2^- , it is D_{2n} dicyclic group.
- 5. Remark: In Q3, if the number k to be even, then the image of ρ is SO(V). The subset is Spin(V) as a subgroup of Pin(V) and an central extension of SO(V) by $\{\pm 1\}$ corresponding to $w_2 \in H^2(BSO_n, \mathbb{Z}/2)$.