SPT AND MANIFOLD INVARIANTS: EXERCISE 4

MENG GUO

1. Recall that $H^*(BO_1, \mathbb{F}_2) = H^*(\mathbb{R}P^2, \mathbb{F}_2) = \mathbb{F}_2[x]$, $x \in H^1(\mathbb{R}P^2, \mathbb{F}_2)$. Show that by axiomatic definition of Steenrod squares

 $\operatorname{Sq}^{2^{k}}\operatorname{Sq}^{2^{k-1}}\cdots\operatorname{Sq}^{2}\operatorname{Sq}^{1}x = x^{k+1}$

and all others $\operatorname{Sq}^{I} x = 0$ where $\operatorname{Sq}^{I} = \operatorname{Sq}^{i_{1}} \cdots \operatorname{Sq}^{i_{n}}$ for $I = (i_{1}, \cdots, i_{n}) \neq (2^{n}, \cdots, 1) \in \mathbb{Z}_{\geq 0}^{n}$.

2. Recall that the BO_n classifying rank n vector bundle. Let $f : BO_1 \times \cdots \times BO_1 \to BO_n$ be the map sending the n-tuple of line bundles $(L_1, \dots, L_n) \mapsto L_1 \oplus \cdots \oplus L_n$. You can also think of this map as the induced map of classifying space of the group map $O_1 \cdots O_1 \to O_n$. The induced map on cohomology

$$f^*: H^*(BO_n, \mathbb{F}_2) \to H^*(BO_1 \times BO_n, \mathbb{F}_2) = \otimes H^*(BO_1, \mathbb{F}_2) = \mathbb{F}_2[x_1, x_2, \cdots x_n]$$
$$w_k \mapsto \sigma_k(x_1, \cdots, x_n)$$

where σ_k is the elementary symmetric functions on the *n* variables. (If you don't believe this, consider this map is invariant under the action the symmetric group Σ_n permutating copies of line bundles). Use the definition to compute Sq^1w_k and Sq^2w_k .

- 3. In the computation of $\operatorname{Ext}_{\mathcal{A}(0)}(\mathbb{F}_2, \mathbb{F}_2)$, show that h_0^i is the generator of $\operatorname{Ext}_{\mathcal{A}(0)}^{i,i}(\mathbb{F}_2, \mathbb{F}_2)$, and therefore $\operatorname{Ext}_{\mathcal{A}(0)}(\mathbb{F}_2, \mathbb{F}_2) = \mathbb{F}_2[h_0]$
- 4. Show that a more general claim of last question: $\operatorname{Ext}_{\Lambda[x]}(\mathbb{F}_2, \mathbb{F}_2) = \mathbb{F}_2[y]$, where $\Lambda[x] = \mathbb{F}_2[x]/(x^2)$ and $y \in \operatorname{Ext}^{1,|x|}(\mathbb{F}_2, \mathbb{F}_2)$.
- 5. Show that $\operatorname{Ext}_{P \times Q}(\mathbb{F}_2, \mathbb{F}_2) \cong \operatorname{Ext}_P(\mathbb{F}_2, \mathbb{F}_2) \otimes \operatorname{Ext}_Q(\mathbb{F}_2, \mathbb{F}_2)$, *P* and *Q* are graded \mathbb{F}_2 -algebras.
- 6. Use the Adem relations $Sq^iSq^j = \sum_{0 \leqslant k \leqslant \frac{i}{2}} {j-k-1 \choose i-2k} Sq^{i+j-k}Sq^k$, i < 2j to show that

$$(\mathrm{Sq}^1\mathrm{Sq}^2 + \mathrm{Sq}^2\mathrm{Sq}^1)^2 = 0$$

Write $Q_0 = Sq^1$, $Q_1 = Sq^1Sq^2 + Sq^2Sq^1$. Convince that the subalgebra generated by Q_0 and Q_1 is $\mathbb{F}_2[Q_0, Q_1]/(Q_0^2, Q_1^2)$

7. Let $\mathcal{A}(1)$ the subalgebra generated by Sq^1, Sq^2 . Show that $\mathcal{A}(1)$ looks like:

Dots stand for a copy \mathbb{F}_2 and vertical line means multiple by Sq^1 . Curly line mens multiple by Sq^2 8. Try to compute $Ext_{\mathcal{A}(1)}(\mathbb{F}_2, \mathbb{F}_2)$