SPT AND MANIFOLD INVARIANTS: EXERCISE 4

MENG GUO

1. Recall that $H^{*}\left(B O_{1}, \mathbb{F}_{2}\right)=H^{*}\left(\mathbb{R} P^{2}, \mathbb{F}_{2}\right)=\mathbb{F}_{2}[x], x \in H^{1}\left(\mathbb{R} P^{2}, \mathbb{F}_{2}\right)$. Show that by axiomatic definition of Steenrod squares

$$
\mathrm{Sq}^{2^{k}} \mathrm{Sq}^{2^{k-1}} \cdots \mathrm{Sq}^{2} \mathrm{Sq}^{1} x=x^{k+1}
$$

and all others $\mathrm{Sq}^{I} x=0$ where $\mathrm{Sq}^{I}=\mathrm{Sq}^{i_{1}} \cdots \mathrm{Sq}^{i_{n}}$ for $I=\left(i_{1}, \cdots, i_{n}\right) \neq\left(2^{n}, \cdots, 1\right) \in \mathbb{Z}_{\geqslant 0}^{n}$.
2. Recall that the $B O_{n}$ classifying rank n vector bundle. Let $f: B O_{1} \times \cdots \times B O_{1} \rightarrow B O_{n}$ be the map sending the n-tuple of line bundles $\left(L_{1}, \cdots, L_{n}\right) \mapsto L_{1} \oplus \cdots L_{n}$. You can also think of this map as the induced map of classifying space of the group map $O_{1} \cdots O_{1} \rightarrow O_{n}$. The induced map on cohomology

$$
\begin{gathered}
f^{*}: H^{*}\left(B O_{n}, \mathbb{F}_{2}\right) \rightarrow H^{*}\left(B O_{1} \times B O_{n}, \mathbb{F}_{2}\right)=\otimes H^{*}\left(B O_{1}, \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[x_{1}, x_{2}, \cdots x_{n}\right] \\
w_{k} \mapsto \sigma_{k}\left(x_{1}, \cdots, x_{n}\right)
\end{gathered}
$$

where σ_{k} is the elementary symmetric functions on the n variables. (If you don't believe this, consider this map is invariant under the action the symmetric group Σ_{n} permutating copies of line bundles). Use the definition to compute $\mathrm{Sq}^{1} w_{k}$ and $\mathrm{Sq}^{2} w_{k}$.
3. In the computation of $\operatorname{Ext}_{\mathcal{A}(0)}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$, show that h_{0}^{i} is the generator of $\operatorname{Ext}_{\mathcal{A}(0)}^{i, i}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$, and therefore $\operatorname{Ext}_{\mathcal{A}(0)}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[h_{0}\right]$
4. Show that a more general claim of last question: $\operatorname{Ext}_{\Lambda[x]}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)=\mathbb{F}_{2}[y]$, where $\Lambda[x]=\mathbb{F}_{2}[x] /\left(x^{2}\right)$ and $y \in \operatorname{Ext}^{1,|x|}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$.
5. Show that $\operatorname{Ext}_{P \times Q}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{P}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \otimes \operatorname{Ext}_{Q}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right), P$ and Q are graded \mathbb{F}_{2}-algebras.
6. Use the Adem relations $\mathrm{Sq}^{i} \mathrm{Sq}^{j}=\sum_{0 \leqslant k \leqslant \frac{i}{2}}\binom{j-k-1}{i-2 k} \mathrm{Sq}^{i+j-k} \mathrm{Sq}^{k}, i<2 j$ to show that

$$
\left(\mathrm{Sq}^{1} \mathrm{Sq}^{2}+\mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)^{2}=0
$$

Write $Q_{0}=\mathrm{Sq}^{1}, Q_{1}=\mathrm{Sq}^{1} \mathrm{Sq}^{2}+\mathrm{Sq}^{2} \mathrm{Sq}^{1}$. Convince that the subalgebra generated by Q_{0} and Q_{1} is $\mathbb{F}_{2}\left[Q_{0}, Q_{1}\right] /\left(Q_{0}^{2}, Q_{1}^{2}\right)$
7. Let $\mathcal{A}(1)$ the subalgebra generated by $\mathrm{Sq}^{1}, \mathrm{Sq}^{2}$. Show that $\mathcal{A}(1)$ looks like:

Dots stand for a copy \mathbb{F}_{2} and vertical line means multiple by Sq^{1}. Curly line mens multiple by Sq^{2}
8. Try to compute $\operatorname{Ext}_{\mathcal{A}(1)}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$

