Modular operads: Exercises Sheet 1 Lukas Müller

Graph categories

- 1. Define the operations π_0 and ν formally using the definition of graphs from the lecture in terms of $(H \to V, \iota)$. Show that for a rooted forest both π_0 and ν are rooted forests in a canonical way.
- 2. The goal of this exercise is to familiarize ourselves with the symmetric monoidal categories RForests, Forests, and Graphs introduced in the lecture.
 - (a) Compute the automorphisms group of an arbitrary object of RForests, Forests, and Graphs. Are there non-invertible endomorphisms?
 - (b) Show that all morphisms in **RForests**, **Forests**, and **Graphs** are generated (under composition and tensor product) by graphs with only one internal edge.
- 3. Look up the definition of an operad (for example on Wikipedia) and use the previous exercise to show that it is equivalent to symmetric monoidal functors $\mathsf{RForests} \to \mathsf{Set}$.
- 4. (*) One might think that **Graphs** is more natural a 2-category. Define such a 2-category and compare it to the 1-categorical definition from the lecture.
- 5. For a corolla in $T \in \text{Graphs}$ we define the category $\text{Gr}_{\text{conn}}(T)$ as follows: Its objects are connected graphs with an identification of their legs with T. Morphisms are given by collapsing of subtrees and symmetries of the graph. Show that $\text{Gr}_{\text{conn}}(T)$ is equivalent to the silce ℓ/T for ℓ : Forests \rightarrow Graphs.

General structure of operads

- 1. Show that the existence of operadic units is a property, i.e. if an operadic unit exists its unique. Give an example for an operad without operadic unit.
- 2. Do limits and colimits exist in the category of set valued (modular) operads?
- 3. What data is needed to extend an ordinary operad to a cyclic one? What about extending from cyclic to modular operads?
- 4. A symmetric sequence is a symmetric monoidal functor $\mathsf{RForests}^{\times} \to \mathcal{C}$ from the core of $\mathsf{RForests}$ to \mathcal{C} . For $\mathcal{C} = \mathsf{Set}$ show that left Kan extension along $\mathsf{RForests}^{\times} \to \mathsf{RForests}$ defines the free operad on a symmetric sequence. In particular, show that it is symmetric monoidal. Does this work for arbitrary \mathcal{C} ?
- 5. Can you generalize the previous exercise to cyclic operads?
- 6. Describe the action of the cyclic group on a composition of two operations in a cyclic operad.