Modular operads: Exercises Sheet 4 Lukas Müller

Modular envelope

- 1. Show that U_{f} defined in the lecture is symmetric monoidal.
- 2. Show that π_0 of the Cat-valued modular envelope is the left adjoint of the restriction to cyclic operads.
- 3. What is π_0 of the modular envelop of the framed E_2 operad?
- 4. Use the previous exercise to proof that 2-dimensional Vect-valued TQFTs are classified by symmetric commutative Frobenius algebras.
- 5. (\star) The goal of this exercise is to explain the connection between the modular envelope and dihedral homology.
 - (a) Denote by $\mathsf{Gr}^{\mathrm{a}}_{\mathrm{conn}}(T)$ the full subcategory of $\mathsf{Gr}_{\mathrm{conn}}(T)$ spanned by graphs containing no vertex of valence one. Show that for any corolla T, the inclusion $\iota : \mathsf{Gr}^{\mathrm{a}}_{\mathrm{conn}}(T) \to \mathsf{Gr}_{\mathrm{conn}}(T)$ is homotopy final.¹
 - (b) For any corolla T and a non-negative integer g, denote by $\mathsf{Gr}^{\mathbf{a},g}_{\mathrm{conn}}(T) \subset \mathsf{Gr}^{\mathbf{a}}_{\mathrm{conn}}(T)$ the full subcategory spanned by graphs whose first Betti number is g. Then $\mathsf{Gr}^{\mathbf{a},g}_{\mathrm{conn}}(T)$ is connected and

$$\mathsf{Gr}^{\mathrm{a}}_{\mathrm{conn}}(T) = \bigsqcup_{g \ge 0} \mathsf{Gr}^{\mathrm{a},g}_{\mathrm{conn}}(T)$$
.

As an immediate consequence, we find

$$\begin{split} |U_{\int}\mathcal{O}|(T) \simeq & \bigsqcup_{g \geq 0} |U_{\int}^{g}\mathcal{O}|(T) \\ \text{with} \quad U_{\int}^{g}\mathcal{O}(T) := \int \left(\mathsf{Gr}_{\mathrm{conn}}^{\mathrm{a},g}(T) \subset \mathsf{Gr}_{\mathrm{conn}}(T) \to \mathsf{Forests} \to \mathcal{O}\mathsf{Cat}\right) \;. \end{split}$$

We call $U_{\int}^{g} \mathcal{O}(T)$ the genus g contribution to $U_{\int} \mathcal{O}(T)$. Let \bullet be the corolla with no legs. Show that the category $\mathsf{Gr}_{\mathrm{conn}}^{\mathrm{a},1}(\bullet)$ is equivalent to the dihedral category without degeneracies defined as follows: Recall that *Connes' cyclic category* Λ is the category with objects \mathbb{N}_{0} ; we denote the object corresponding to $n \geq 0$ by [n]. A morphism $f: [n] \to [m]$ is given by an equivalence class of functions $f: \mathbb{Z} \to \mathbb{Z}$ such that f(i+n+1) = f(i)+m+1 modulo the relation $f \sim g$ if f-g is a constant multiple of m+1. The category Λ contains the simplex category Δ as subcategory. As generating morphisms, it has the face and degeneracy maps that we already

¹A functor $F : \mathcal{C} \to \mathcal{D}$ is called *homotopy final* if the realization |(d/F)| of the nerve of the slice of F under any $d \in \mathcal{D}$ is contractible. This implies that F preserves homotopy colimits.

know from the simplex category Δ and the cyclic permutations $\tau_n : [n] \to [n]$ represented by maps $\mathbb{Z} \to \mathbb{Z}$ that shift by one. The cyclic permutations fulfill, besides the obvious relation $\tau_n^{n+1} = \mathrm{id}_{[n]}$, further compatibility relations with the face and degeneracy maps. We denote by $\vec{\Lambda} \subset \Lambda$ the subcategory of the cyclic category without degeneracy maps. The category Λ has a natural action of \mathbb{Z}_2 through the *reversal functor* $r: \Lambda \to \Lambda$ which is the identity on objects and sends any morphism $f : [n] \to [m]$ in Λ to $r(f) : [n] \to [m]$ given by (r(f))(p) :=m - f(n - p). We denote by $\Lambda \rtimes \mathbb{Z}_2$ the Grothendieck construction of the functor $B\mathbb{Z}_2 \to \mathsf{Cat}$ from the groupoid with one object and automorphism group \mathbb{Z}_2 to the category Cat of categories sending * to Λ and the generator $-1 \in \mathbb{Z}_2$ to the reversal functor $r: \Lambda \to \Lambda$ (recall that the Grothendieck construction $\int F$ of a functor $F: \mathcal{C} \to \mathsf{Cat}$ is the category of pairs (c, x) formed by all $c \in \mathcal{C}$ and $x \in F(c)$). The category $\Lambda \rtimes \mathbb{Z}_2$ can be identified with the *dihedral category*. Restriction to Λ yields a functor $\vec{r}: \vec{\Lambda} \to \vec{\Lambda}$. This allows us to define $\vec{\Lambda} \rtimes \mathbb{Z}_2$, the semidihedral category, also via a Grothendieck construction. We can see $(\vec{\Lambda} \rtimes \mathbb{Z}_2)^{\text{op}}$ as the Grothendieck construction of the \mathbb{Z}_2 -action on $\vec{\Lambda}^{\text{op}}$ through the functor $\vec{r}^{\text{op}} : \vec{\Lambda}^{\text{op}} \to \vec{\Lambda}^{\text{op}}$ induced by r. In other words, $(\vec{\Lambda} \rtimes \mathbb{Z}_2)^{\text{op}} = \vec{\Lambda}^{\text{op}} \rtimes \mathbb{Z}_2$. Similarly, $(\Lambda \rtimes \mathbb{Z}_2)^{\text{op}} = \Lambda^{\text{op}} \rtimes \mathbb{Z}_2$.

- (c) Functors out of the opposite categories of $\Lambda \rtimes \mathbb{Z}_2$ and $\vec{\Lambda} \rtimes \mathbb{Z}_2$ are called *dihedral objects* and *semidihedral objects*, respectively. Give a more explicit description of dihedral objects. Construct a dihedral object from an algebra with anti-involution. Show that the operations $\mathcal{O}(T_1)$ of a cyclic operad form a semidihedral object. We call it $\mathfrak{U}_{\mathcal{O}}$.
- (d) For a semidihedral object $A: (\vec{\Lambda} \rtimes \mathbb{Z}_2)^{\mathrm{op}} \to \mathsf{Top}$ in spaces we define the dihedral homology as $\mathrm{DH}(A) = \mathrm{hocolim}_{[n] \in \vec{\Lambda}^{\mathrm{op}} \rtimes \mathbb{Z}_2} A([n])$. Show that $|U_{\int} \mathcal{O}^1(\bullet)| \cong \mathrm{DH} |\mathfrak{U}_{\mathcal{O}}|$.

Open 2D field theories

- 1. Let Z be a Vect valued open 2d TQFT. Compute the value of Z on the following boridsms:
 - (a) $S^1 \times [0,1]$ with no marked boundary intervals
 - (b) $S^1 \times [0, 1]$ with two marked boundary intervals (for all possible positions of those)
 - (c) Genus g surfaces with n free boundary components and one interval.
 - (d) Is there a way of building a closed 2-dimensional field theory from an open one?
- 2. (**) Look up/ work out the details missing in the proof $\mathcal{O} \cong |U_f As|$
- 3. What is the mapping class group of an annulus with a marked interval in both of its boundary components? How can you realize the elements of this group using ribbon graphs?
- 4. A Frobenius algebra is called Δ -separable if the composition $\Delta \circ \mu$ is the identity. What does this mean for the corresponding open TQFT. Can you use this to define a closed TQFT?

5. (*) What can you say about unoriented open TQFTs?