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Introduction

Tensor models are particularly interesting
because their large N expansion is domi-
nated by melonic diagrams. First, it is richer
than the large N limit of vector models (dom-
inated by bubbles diagrams). Second, it is
simpler than the planar limit of matrix mod-
els.
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Fig. 1: Large N limit of vector, matrix and tensor models from left to right.

Tensor models were first studied in zero di-
mension in the context of random geometry
and quantum gravity. They were then linked
to quantum systems in one dimension. In
particular, they provide an alternative to the
SYK model without disorder. Recently, they
were generalized to d dimensions and stud-
iled as proper quantum field theories. In this
context, they give rise to a new family of con-
formal field theories (CFT). We call those
type of CFT melonic. Thanks to the large
N limit they can be studied both analytically
and at strong coupling.

Model

The simplest model that can be studied is
the quartic O(N)’ bosonic tensor model.
The bosonic field is a real tensor of rank 3
transforming under O(N)°. lts indices are
distinguished by the position. Contrary to
scalar models, there are three quartic inter-
actions (corresponding to the O(N)’ invari-
ants). tetrahedron, pillow and double trace.
We represent them graphically:
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Fig. 2: We represent every tensor as a vertex and every contraction of two
indices as an edge. The color of the edge corresponds to the position of the

index.

We work at fixed dimension d < 4 and in-
clude a non trivial power of the Laplacian
0 < ¢ < 1. It renders the interaction ex-
actly marginal for ¢ = 4. This kind of model
Is called long-range. To renormalize this
model, we will consider the weakly relevant
case ¢ = &= with small € > 0.
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Flow and fixed points

We found four lines of fixed point parametrized by
the tetrahedron coupling g. For a purely imaginary
g, one of them is real and infrared stable [1].
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Fig. 3: Flow of the theory in the space of the pillow and double-trace couplings (g1, g2).

The red dot is the infrared attractive fixed point.

Dimensions of bilinears and
OPE Coefficients

In a CFT, the operator product expansion (OPE) is
strongly constrained by conformal invariance and
the sum restricts to primary operators:

¢1(T1)P2(T2) = Z CO e .
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Fig. 4. Graphical representation of the OPE for a CFT.

where cp» are the OPE coefficients that we will now
compute.

The four point function in a CFT can always be
written as:
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with J the spin, G"(z;) the conformal block,
pi, (h, J) the measure and k(h, J) the eigenvalues
of the two particle irreducible four point kernel. The
kernel is here known thanks to the large N limit.
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Fig. 5: Graphical representation of the kernel amputated to the right at leading order in
N. The first two terms are based respectively on pillow and double-trace vertices while

the last one is based on a pair of tetrahedral vertices.

The OPE coefficients are obtained by deforming
the integration contour to the right and picking up
the poles in the integrand. The only poles con-
tributing are the h,, ; such that k(h, J) = 1. These
are exactly the dimensions of the bilinear opera-
tors ¢0”’(9°)"¢. The squares of the OPE coeffi-
cients ¢, ; are then the residues at those poles.
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Dimensions of bilinears [2]:

«Spin J = 0: real for purely imaginary
renormalized tetrahedral coupling g
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*Spin J > 0, m € N: always real
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OPE coefficients:
(J,m) # (0,0): real OPE coefficients
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*(J,m) = (0,0): real for purely imaginary g
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Those results point towards a unitary CFT at
the IR stable fixed point in the large NV limit.

Further work and
Applications

* Proof of conformal invariance and correla-
tion functions for composite operators [3].

- Computation of 1/N corrections: breaking
of unitarity [4].

 Similar studies for other tensor models:
sextic interactions, fermionic fields [5].

* Further study of long-range models: useful
In statistical physics [6].
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