

Higher Dualizability in Higher Morita Categories

A fully extended (here: framed) topological field theory is a symmetric monoidal functor out of the (framed) bordism category. For the specific target category $\mathrm{Alg}_n(\mathcal{S})$, this becomes

$$\mathcal{Z}: \operatorname{Bord}_n^{\operatorname{fr}} \to \operatorname{Alg}_n(\mathcal{S})$$

Informally, the **higher Morita category** $Alg_n(S)$ is

n-cat.	standard version	factorization version
0-morp.	E_n -algebra	locally constant on $(0,1)^n$
1-morp.	bimodule of E_n -	constructible for
	algebras	$\{a^1\} \times (0,1)^{n-1}$
:	:	:
n-morp.	bimodule of bi-	constructible for full flags
	modules	
(n+1)-	bimodule map	map of factorization alge-
morp.		bras
:	:	:

For n = 2, the factorization version corresponds to *constructible factorization algebras* on stratified spaces like illustrated below

Theorem (Gwilliam-Scheimbauer, '18). Let S be a symmetric monoidal \otimes -sifted cocomplete $(\infty, 1)$ -category. The symmetric monoidal $(\infty, n+1)$ -category $Alg_n(S)$ is fully n-dualizable.

Conjecture (Lurie, '09). An E_n -algebra $A \in Alg_n(S)$ is (n+1)- dualizable if, and only if, it is dualizable over the factorization homologies

$$\int_{\mathbb{S}^{k-1}\times\mathbb{R}^{n-k+1}} \mathcal{A}, \qquad \text{for } k=0,1,...,n.$$

This is proven for n = 1 by Lurie, and for n = 2 by Brochier-Jordan-Snyder.