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I normally like to avoid all foundational nonsense when I think about abstract nonsense.
Everyone knows that the set theorists say that Cat is not an object in Cat, and we almost
never care. But stating Yoneda’s lemma requires carefully constructing the functor category
Fun(A,B), which even for normal categories (enriched over Set) is not itself (usually) a
category enriched over Set. For example, let C be the trivial category of cardinalities and
only identity morphisms, and let D be the category of cardinalities and injections. Then we
have two immediate functors C → C×D: we can send F : X 7→ (X, 1) and G : X 7→ (X,X).
But then the only data in a natural transformation from F ⇒ G is a choice of function
1 → X for each X; the collection of all such choice functions is clearly too large to be a
set. So when we try to define Yoneda’s lemma for enriched categories, we should expect to
have to enlarge our categories, just as we have to move to a larger universe when trying to
make functor categories over Set.

But before I start going into these details, let me remind you of the setup. We have
a particular favorite closed monoidal1 category A, for example AbGp or SVect, with
monoidal product ⊗, functorial in each variable. Being closed means that Hom(X,Y ) ∈ A
for X,Y ∈ A. Of course, it’s also a category; I will use Hom0(X,Y ) = HomA0(X,Y ) when
I mean the set of morphisms, whereas the unmarked Hom(−,−) = HomA(−,−) takes
values in A. Occasionally, I will call Hom0(−,−) the “reduced Hom”.

Moreover, since A is monoidal, it has a unit object 1. Then we have a functor
Hom0(1,−) : A → Set, which deserves to be called “forget”, because it exactly picks
out just the “reduced points”. I will occasionally use X0 for Hom0(1, X), and A0 for the
image Hom0(1,A) ⊆ Set. We also have an adjunction2

adj : Hom0(X,Hom(Y, Z)) ∼= Hom0(Y ⊗X,Z)
∗The material for this talk is lifted almost entirely from G.M. Kelly, Basic Concepts of Enriched Category

Theory, Cambridge University Press, 2005.
1I will assume all my monoidal structures are strong, so that I will not write the associators. For example,

when I write Set, I really mean the skeleton: use the Axiom of Choice to pick one set of each cardinality.
2We need the adjunction to “switch the order” like this in order to get composition without a braiding.
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which justifies the notation:

Hom0(1,Hom(X,Y )) ∼= Hom0(X ⊗ 1, Y ) = Hom0(X,Y ).

Of course, Yoneda and the adjunction give

Hom(1, Y ) ∼= Y

Moreover, the standard Yoneda’s lemma for A also gives us

Hom(X,Hom(Y, Z)) ∼= Hom(Y ⊗X,Z).

Because of our forgetful functor, we can talk about (reduced) points in A-objects, and
(reduced) morphisms. But we probably shouldn’t. Hom0(1,−) is regularly not monoidal
— e.g. it does not take ⊗ in AbGp to × in Set — and almost never full, since Set has
less structure and hence more morphisms, and sometimes not even faithful: for example,
Hom0(1,−) : SVect → Set preserves only the even vectors in a super vector space, and
hence only the even morphisms.

In any case, let’s say we have an A-enriched category (“A-category”) C. I.e. we have a
collection of objects, and for any pair of objects X,Y we have an A-object Hom(X,Y ) =
HomC(X,Y ) ∈ A. Of course, C is also a Set-enriched category: by hitting Hom(X,Y )
with the forgetful functor we can define a category C0 with the same objects as C and
Hom-sets given by

Hom0(X,Y ) = HomC0(X,Y ) = Hom0(1,Hom(X,Y )) ∈ Set.

To be an A-category also requires that we have a composition law

HomC(X,Y )⊗HomC(Y,Z)
µ→ HomC(X,Z)

satisfying associativity:

Hom(W,X)⊗Hom(X,Y )⊗Hom(Y, Z)
µ⊗ id

- Hom(W,Y )⊗Hom(Y,Z)

#

Hom(W,X)⊗Hom(X,Z)

id⊗ µ

? µ
- Hom(W,Z)

µ

?

For example, A is an A-category: we already discussed the (inner) Hom; the composition
HomA(X,Y ) × HomA(X,Y ) → HomA(X,Z) comes from the composition in Hom0(−,−)
and the adjunction: we have an evaluation map

id ∈ Hom0(HomA(X,Y ),HomA(X,Y ))
adj7−→ ev ∈ Hom0(X ⊗HomA(X,Y ), Y )

and thus composition:

2



X ⊗Hom(X,Y )⊗Hom(Y,Z) ev⊗id−→ Y ⊗Hom(Y,Z) ev−→ Z

⇓ adj

Hom(X,Y )⊗Hom(Y, Z) ◦−→ Hom(X,Z)

I should also, of course, mention identities, which should be in the reduced part, i.e.
an identity is an arrow 1 → Hom(X,X) satisfying certain diagrams. But for A as an
A-category, id ∈ Hom0(X,X) gives us exactly such an arrow under the adjunction.

As a second example of an A-enriched category, if C is an A-category, we might hope
to make a category Cop with the same objects, and with HomCop(X,Y ) = HomC(Y,X).
Composition, however, fails unless A is braided:

Homop(X,Y )⊗Homop(Y,Z) = Hom(Y,X)⊗Hom(Z, Y ) braid−→

Hom(Z, Y )⊗Hom(Y,X)
µ−→ Hom(Z,X) = Homop(X,Z)

A third example: if C and D areA-categories, then so is C⊗D with objects being ordered
pairs of objects, and HomC⊗D((XC , XD), (YC , YD)) = HomC(XC , YC)⊗HomD(YC , YD).

Another comment is due about the “forgetful functor” Hom0(1,−). The composition
law in anA-category C can be written, via the adjunction, as the morphism “post-compose”
in

Hom0(HomC(Y,Z),Hom(HomC(X,Y ),HomC(X,Z))).

But applying Hom0(1,−) to this equation gives a function

Hom0(1,HomC(Y, Z)) = HomC0(Y,Z)→ Hom0(HomC0(X,Y ),HomC0(X,Z))

This is to say that any A-category is also a Set-category.
In any case, what is an A-functor of A-categories F : C → D? It should be

• An assignment from objects to objects: X F7→ F (X).

• An arrow (inA) from Hom-objects to Hom-objects: HomC(X,Y ) F→ HomD(F (X), F (Y )),
i.e. an element of the set Hom0(HomC(X,Y ),HomD(F (X), F (Y ))). This should pre-
serve identities and compositions, i.e. certain natural squares must commute.

For example, HomC(W,−) is a functor from C → A for any W ∈ C, where it acts on mor-
phisms by taking the adjunction of the composition law in C. Of course, by the adjunction,
HomA(1,−) is the identity functor on A. Functor composition is obviously well-defined
(since we can glue commutative squares) and associative, so the A-categories form a cate-
gory ACat with HomACat(C,D) = FunA(C,D). Our first goal, then, is to enrich this into
an A-2-category (i.e. make the Homs into A-categories), and make sense of “fully faithful”.
Once we have done so, we will be able to state (and prove) Yoneda’s lemma.

So, let’s unpack what it means to be a natural transformation. Over Set, a natural
transformation between functors F,G : C → D is:
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• An assignment to each X ∈ C an arrow F (X) → G(X), i.e. an element ηX ∈
HomD(F (X), G(X)).

• This assignment is subject to some conditions: in particular, given φ : Y → Z, we
demand that

F (Y )
ηY- G(Y )

#

F (Z)

Fφ

? ηZ- G(Z)

Gφ

?

Which is to say that NatCD(F,G) is the subset of
∏
X∈C HomD(F (X), G(X)) satisfying

this diagram. Restating the diagram, if η ∈
∏
X∈C HomD(F (X), G(X)), then for every

morphism φ ∈ HomC(Y, Z) we can pre- or post-compose with η: F (Y )
ηY−→ G(Y )

Gφ−→ G(Z)

and F (Y )
Fφ−→ F (Z)

ηZ−→ G(Z). I.e. η gives us two maps, for each Y,Z ∈ C, from
HomC(Y,Z) → HomD(F (Y ), G(Z)). The definition of a natural transformation is exactly
any such η so that these two maps are the same.

But, moving even higher, by the previous paragraph we have, for every pair X,Y ∈ C,
two canonical maps

∏
X∈C HomD(F (X), G(X)) ⇒ Hom(HomC(Y,Z),HomD(F (Y ), G(Z)))

and thus there are two maps∏
X∈C

HomD(F (X), G(X)) ⇒
∏
Y,Z∈C

Hom(HomC(Y, Z),HomD(F (Y ), G(Z)))

Then Nat(F,G) is the equalizer of these two maps (in Set, those elements that have the
same image under both maps).

Well, if we can define these two maps, then we can take this as a definition of Nat(−,−)
even in the enriched case. (Provided, of course, that we deal with the problem that if C is
not small, then these products are not defined even in Set.)

Assuming A has all limits (even very large ones), we get for each Y, Z a distinguished
element of

Hom0

(∏
X∈C

HomD(F (X), G(X)),HomA(HomD(F (Y ), F (Z)),HomD(F (Y ), G(Z)))

)

by first projecting onto the Zth component and then using the adjunction with the com-
position HomD(F (Y ), F (Z))⊗HomD(F (Z), G(Z))

µD−→ HomD(F (Y ), G(Z)). On the other
hand, the functoriality of F (and the adjunction) picks a map

1→ HomA(HomC(Y, Z),HomD(F (Y ), F (Z)))

4



and so tensoring on the right with the identity on

HomA(HomD(F (Y ), F (Z)),HomD(F (Y ), G(Z)))

and composing with the composition in A gives

HomA(HomD(F (Y ), F (Z)),HomD(F (Y ), G(Z)))→ HomA(HomC(Y,Z),HomD(F (Y ), G(Z)))

But composing this with the distinguished element above gives us a map∏
X∈C

HomD(F (X), G(X)) −→ HomA(HomC(Y,Z),HomD(F (Y ), G(Z)))

and we can take the product over all Y and Z.
For the other map, we do almost exactly the same thing: we project onto the Y th

component in the product, but now after using the adjunction for the first time and before
composing we must braid HomD(G(Y ), G(Z)) past HomD(F (Y ), G(Y )). That we need a
braiding is not too surprising — Yoneda’s lemma is inherently contravariant, and to make
sense of contravariant A-functors requires the braiding in order to define Cop. Thus, we
really do have two maps∏

X∈C
HomD(F (X), G(X)) ⇒

∏
Y,Z∈C

HomA(HomC(Y, Z),HomD(F (Y ), G(Z)))

corresponding to the left- and right- compositions with our proposed natural transforma-
tions. Then we define NatC,D(F,G) to be the equalizer of these two maps.

A few remarks now are in order. If T (−,−) : Cop ⊗ C → D is contravariant in the first
variable and covariant in the second, then we can read off a notion of a “natural family of
maps” λX ∈ HomD0(L, T (X,X)) as being those maps that make this square commute:

HomC(Y,Z)
T (id|Y ,−)

- HomD(T (Y, Y ), T (Y, Z))

HomD(T (Z,Z), T (Y, Z))

T (id|Z ,−)

? Hom(λZ , id)
- HomD(L, T (Y, Z))

Hom(λY , id)

?

Then our definition of NatC,D(F,G) is as the universal natural family for T (−,−) =
HomD(F (−), G(−)). Any construction using identities, Homs, and adjunctions is nec-
essarily natural; e.g. evaluation.

More comments: we have assumed a braiding in A. Otherwise, the adjunction is just
not strong enough to reproduce everything we want. But a much stronger assumption is
that we have assumed A to contain all limits, so that it has products and equalizers. Really
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I should say “all small limits”, but we have also implicitly passed to a universe large enough
that C is small. Given our experience with Set, neither of these rather strong assumptions
should really surprise us.

There are two standard statements of Yoneda’s lemma:

1. Given an A-functor F : C → A, we have an isomorphism

F (W ) ∼= NatC,A(HomC(W,−), F )

2. The functor C → FunA(Cop,A) given by X 7→ HomC(X,−) is fully faithful. I.e.

HomC(Y, Z) ∼= Nat(HomC(Y,−),HomC(Z,−))

The second statement explicitly refers to the braiding in A in order to define Cop; con-
structing the isomorphism in the first statement also requires the braiding. So I will from
now on assume that A is a braided monoidal category. As with Set, the second statement
follows form the first by letting F : Cop → A be the functor HomC(−, Z). Of course, the
functor in the second statement is not generally an embedding (injection) of objects; for
example, if C = Set and A is the category of cardinalities and functions.

Thus, we have only to prove the first statement. Since we have defined Nat(HomC(W,−), F )
as a limit — i.e. in terms of its universal property — we have only to check that F (W )
satisfies the universal property.

1. We need

F (W ) →
∏
X∈C

HomA(HomC(W,X), F (X))

⇒
∏
Y,Z∈C

HomA(HomC(Y,Z),HomA(HomC(W,Y ), F (Z)))

The first arrow is straightforward. We describe it for each X ∈ C. By the adjunction,
we just need an arrow HomC(W,X)⊗ F (W )→ F (X). By using the functoriality of
F to get HomC(W,X) → HomA(F (W ), F (X)), braiding the F (W ) past, and then
evaluating, we get the desired morphism. In fact, every step we did was natural
in X, so we could be done with this direction: by the universal property, we have
F (W )→ Nat(HomC(W,−), F ).

In more detail, when we defined the double arrows, we started by projecting onto the
Y or Z components. Thus, we’re reduced to understanding two maps

HomA(HomC(W,Z), F (Z))→ HomA(HomC(Y,Z),HomA(HomC(W,Y ), F (Z)))

HomA(HomC(W,Y ), F (Y ))→ HomA(HomC(Y,Z),HomA(HomC(W,Y ), F (Z)))
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Unpacking the definitions reveals that these are very simple: In either case the map

F (W )→ Hom(HomC(Y, Z),Hom(HomC(W,Y ), F (Z)))

is given (using the adjunction) by the map

HomC(W,Y )⊗HomC(Y,Z)⊗ F (W )→ F (Z)

by braiding F (W ) past the Homs, and either composing the Homs and then using the
functoriality of F and evaluating, or by first using functoriality and then composing
and evaluating.

Using Set-based language, diagram-chasing shows that F (W ) is (isomorphic to) a
subset of Nat(HomC(W,−), F ).

2. On the other hand, if we have any other λ : L →
∏
X∈C HomA(HomC(W,X), F (X))

equilizing the double arrows, we need to find a map L → F (W ). Here rather than
continuing to diagram-chase, I’ll be rather glib. The maps

λX : L→ HomA(HomC(W,X), F (X))

must be natural in X, and hence so is the map formed with the adjunction and the
braiding

HomC(W,X)→ HomA(L,F (X))

but, being natural, this map must factor through

HomC(W,X)→ HomA(F (W ), F (X))→ HomA(L,F (X))

and hitting the second arrow with Hom0(1,−) and using the classical Yoneda gives
the desired map L→ F (W ).

All together, we have the Yoneda’s lemma as desired: we have an isomorphism as A-
objects between HomC(X,Y ) and Nat(Hom(Y,−),Hom(X,−)). To get this, we had to
assume rather a lot about A. We assumed it had a braiding, in order to define contravari-
ance — we did not, however, need this braiding to be symmetrical. More troublingly, we
assumed that A was huge, and had hugely many limits. Of course, to accommodate this,
we really out to first increase our universe of sets until A is small, and then use the stan-
dard Yoneda to pass to the functor category Fun(Aop,Set). Provided that we can extend
the monoidal structure, then this is a sufficient category, as all the limits we need exist as
functors.

In any case, most of the time the categories any of us will ever need to work with are
enriched over Set (as well as, possibly, other categories), or over some other extremely
well-behaved category (e.g. a topos). So we almost never need this generalized Yoneda’s
lemma to study the objects of our category. Instead, this Yoneda’s lemma lets us study the
(inner) Hom objects: we might want to know, for instance, what all the supermorphisms
are going into a supervector space.
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