Details at arXiv:1307.5812. Everything is dg. Char=0.

1. Motivation: The classical BV formalism

Defn: *Classical field theory* = the study of those PDE determined by "least action" variational principles = geometry of critical loci (in finite-dimensional manifolds).

C.f.: $QFT = \text{computing } \int (\text{observable}) \exp(\frac{i}{\hbar}(\text{action}))$, with infinite-dimensional domain of integration.

Defn: The *classical BV formalism* is the observation that the *derived* critical locus of any function has a symplectic form of homological degree +1, i.e. a Poisson structure of deg -1. (Convention: differential has deg -1.)

Historical aside: Batalin–Vilkovisky were physicists, working only with $\mathbb{Z}/2$ ("super") gradings. What's called a "BV algebra" in mathematics is not what B–V discovered. It is (almost) the same with $\mathbb{Z}/2$ gradings, but different with \mathbb{Z} gradings. This is Getzler's fault.

Defn: A Pois_d structure on a cdga A is a biderivation making A[1 - d] into a dgla. (Poisson = Pois₁. Grading conventions will be justified later.)

Defn:

dgla : L_{∞} :: Pois_d : semistrict homotopy Pois_d

= system of multiderivations on $\mathcal{O}(X)$ making $\mathcal{O}(X)[1-d]$ into L_{∞} alg. "semistrict" = don't weaken Leibniz.

Polemical aside: Actual derived critical loci are always *cotangent bundles*, not just Pois₀ spaces. So usual BV formalism requires bracket to be *symplectic*, i.e. nondegenerate. Why not work with those? Because of dualities/symmetries/gauge equivalence.

But *symplectic is wrong*. Locally, Poisson = symplectic with parameters, and we know should study geometry in families. Globally, can have rich dualities/etc., so "families of symplectics" isn't good enough: need Poisson.

Cor: Any s.h.Pois₀ space should be considered a (generalized) derived critical locus.

New challenge: Find interesting s.h.Pois₀ structures on spaces of "fields." Interpret as classical field theory.

Thm (Alexandrov–Kontsevich–Schwarz–Zaboronsky):

M is closed oriented d-dim manifold. X is symplectic Pois_d. Then Maps (M_{dR}, X) = derived space of locally constant maps $M \rightarrow X$ is symplectic Pois₀.

With one lie. It is symplectic, i.e. has 2-form with trivial kernel. But it's ∞ -dim. How to invert to Poisson structure? (And see earlier polemical aside.)

2. Infinitesimal manifolds and dioperads

I have an answer when X = infinitesimal manifold.

Defn: An *infinitesimal manifold (with local coord chart)* is spec $\widehat{\text{Sym}}(V)$ for a chain complex V. ($\widehat{\text{Sym}} = \text{completed symmetric algebra}$. All geometry should be cont's for power series topology.)

Technical convenience: Let's assume all geometric structures vanish at $0 \in \operatorname{spec} \widehat{\operatorname{Sym}}(V) \approx V^*$. Then a dg structure on $\operatorname{spec} \widehat{\operatorname{Sym}}(V)$ begins with a linear term; absorb it into differential ∂_V making V into chain complex.

Exercise: A s.h.Pois_d structure on spec Sym(V) is same as system of tensors

in $(\text{sign})^{\otimes d} \otimes (\text{triv})$ subrep of $\mathbb{S}_m^{\text{op}} \otimes \mathbb{S}_n \curvearrowright \text{hom}(V^{\otimes m}, V^{\otimes n})$, satisfying

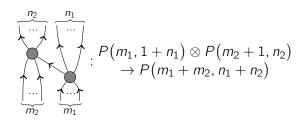
$$\partial_{V} \begin{pmatrix} N \\ \ddots \\ M \end{pmatrix} = \sum_{\substack{m,n,M-m,N-n \ge 1 \\ \dots \\ m \end{pmatrix}} (\#) \underbrace{\begin{pmatrix} n \\ \cdots \\ \dots \\ m \end{pmatrix}}_{m M-m} (*)$$

Coeffs (#) depend on conventions. Average over permutations of input/output strands, with signs when d = odd.

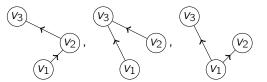
Defn (Gan):

directed trees : dioperads :: rooted trees : operads

I.e. a *dioperad* P consists of $\mathbb{S}_m^{op} \times \mathbb{S}_n$ -modules P(m, n) of "*m*-to-*n* operations" and *binary compositions*



satisfying associative axioms for diagrams like:



E.g.: *V* a chain complex. $End(V)(m, n) = hom(V^{\otimes m}, V^{\otimes n})$ defines a dioperad. An *action* of *P* on *V* (equivalently, *V* is a *P*-algebra) is a homomorphism $P \to End(V)$.

3. Technical tools for working with dioperads

Fact: Dioperads admit model category structure with acylic = quasiisomorphic and fibration = surjection.

Defn: Give dioperad P satisfying mild conditions, its bar dual $\mathbb{D}P$ is freely generated by $P^*[-1]$ with differential dual to \sum (binary compositions) : $P^{\otimes 2} \rightarrow P$ (extend as derivation; associativity $\Leftrightarrow \partial^2 = 0.$)

E.g.: (*) defines dioperad P_d s.t. P_d -algebras = s.h.Pois_d infinitesimal manifolds. By shape of (*), $P_d = \mathbb{D}(F_d)$ for some F_d . What is it? Read off from (*):

$$F_d(m, n) = (\operatorname{sign})^{\otimes m} \otimes (\operatorname{triv})[d(1-m)], \quad mn > 0.$$

Exercise: An F_d -algebra W is a (noncounital) cocommutative coalgebra plus a (nonunital) commutative algebra on W[-d], plus a compatibility condition. I.e. $F_d =$ $Frob_d = open d$ -shifted commutative Frobenius.

Lemma: Frob_d has a presentation with generators:

and *quadratic* relations:

$$= , = (-1)^d , = (-1)^d .$$

Defn: The *quadratic dual* F^{i} of dioperad F with generators T and relations $R \subseteq T^{\otimes 2}$ is generated by $T^*[-1]$ with relations $R^{\perp}[-2] = \ker((T^*[-1])^{\otimes 2} \to R^*[-2]).$

E.g.: Frobⁱ_d = LB_d controls *d*-shifted Lie bialgebras (i.e. bracket of degree d-1, cobracket of degree -1; so V normal Lie bialgebra = V[-1] a LB₂-algebra).

Defn: \exists canonical $\mathbb{D}P \twoheadrightarrow P^i$. *Koszul* = this is acyclic.

Fact: Frob_d is Koszul. **Pf:** Uses Lyndon words.

Fact: $\mathbb{D}P$ always cofibrant (=relatively easy to map out of). So *P* Koszul $\Leftrightarrow \mathbb{D}P \xrightarrow{\sim} P^{i}$ is cofibrant replacement.

Cor: s.h.Pois_d infinitesimal mans = homotopy LB_d algs.

Fact: $\mathbb{DD}P \xrightarrow{\sim} P$ is always a cofibrant replacement.

Fact: Different cofibrant replacements give homotopyequivalent notions of "homotopy P-algebra."

Main fact: For any dioperad P (satisfying mild conditions), \exists canonical homomorphism \mathbb{D} Frob₀ $\rightarrow \mathbb{D}P \otimes P$.

4. The Poisson AKSZ construction

We want Maps(M_{dR} , X) to be s.h.Pois₀ if X = spec Sym(V) is s.h.Pois_d. First, what is $Maps(M_{dR}, X)$?

 $X \approx V^* \Rightarrow \operatorname{Maps}(M_{dR}, X) \approx \mathcal{O}(M_{dR}) \otimes V^* \approx \Omega^{\bullet}_{dR}(M) \otimes V^*$ $V^* \Rightarrow$ linear fns on Maps $(M_{dR}, X) \approx (\Omega^{\bullet}_{dR}(M) \otimes V^*)^* \approx$ $(\Omega^{\bullet}(M))^* \otimes V = \text{Chains}_{\bullet}(M) \otimes V$. Which model of Chains? Depends on how smooth you want "observables" to be.

I.e.: We want \mathbb{D} Frob₀ \rightarrow End(Chains_•(M) \otimes V) given $\mathbb{D}\operatorname{Frob}_d \to \operatorname{End}(V)$ and M oriented.

Cor of Main fact: Since $End(W \otimes V) = End(W) \otimes$ $\operatorname{End}(V)$, it suffices to find $\mathbb{DD}\operatorname{Frob}_d \to \operatorname{End}(\operatorname{Chains}_{\bullet}(M))$, i.e. Chains_•(M) to be homotopy Frob_d algebra. Is it?

Wrong answer: Since *M* is oriented, $H_{\bullet}(M)$ is $Frob_d$. Choose $H_{\bullet}(M) \simeq$ Chains_(M); use homotopy perturbation theory to transfer Frob_d action on $H_{\bullet}(M)$ to homotopy action on Chains(M). Why wrong? Transferred structure is highly non-local. Why right? We do want homotopy Frob_d str to lift Frob_d str on H_{\bullet} .

Defn: Choose complete metric on M. Operation f: $\operatorname{Chains}_{\bullet}(M)^{\otimes m} \to \operatorname{Chains}_{\bullet}(M)^{\otimes n}$ is quasilocal if \exists "uv length scale" $\ell \in \mathbb{R}$ s.t. $f(a_1 \otimes \cdots \otimes a_m) \in \text{Chains}_{\bullet}(B)^{\otimes n}$ where $B = \bigcap_i (\text{radius-}\ell \text{ nbhd of support}(a_i))$. Triangle inequality \Rightarrow quasilocal ops comprise dioperad QLoc(M).

Remark: QLoc is filtered dioperad. Different metrics give compatible filtrations.

Prop: By defn, QLoc \curvearrowright Chains. But Chains. \hookrightarrow Cochains $^{d-\bullet}$ as compactly-supported. And QLoc \sim Cochains^{$d-\bullet$} too.

When M not compact, best to use both Chains, Cochains to define Frob_d str that is to be lifted to QLoc.

Thm: \exists canonical contractible space of quasilocal homotopy Frob_d -algebra structures on $\operatorname{Chains}_{\bullet}(M)$ lifting Frob_d structure on $(H_{\bullet}(M), H^{d-\bullet}(M))$.

Pf: When ℓ sufficiently small, space of ℓ -quasilocal *m*-to-*n* operations has homology $H^{-\bullet}(M)[d(1-m)]$. Generators of \mathbb{DD} Frob_d are graded by syzygy degree σ . ($\sigma = 0$) generators correspond to operations in $Frob_d$, are in hom deg d(1-m); map them to Thom forms. Obstruction to defining ($\sigma = 1$) generators is difference of Thom forms, hence exact. When $\sigma > 1$, obstruction is in hom degree > d(1-m), hence vanishes.

Defn: The *Poisson AKSZ construction* is the s.h.Pois₀ structure on Maps(M_{dR} , spec Sym(V)) coming as

$$\mathbb{D}\operatorname{Frob}_0 \to \mathbb{D}\mathbb{D}\operatorname{Frob}_d \otimes \mathbb{D}\operatorname{Frob}_d \to \operatorname{QLoc} \otimes \operatorname{End}(V) \\ \to \operatorname{End}(\operatorname{Chains}_{\bullet}(M) \otimes V).$$

Remark: Can drop condition that geometry vanishes at $0 \in X$ by using Hirsh-Millès' "curved Koszul duality." Use nonunital but counital Frob. Dual is traced Lie bialgebras.

5. Motivation: The quantum BV formalism

Defn: $QFT = \text{computing } \int (\text{observable}) \exp(\frac{i}{\hbar}(\text{action})).$

Defn: The quantum BV formalism identifies "oscillating integral" with "space X with \hbar -dependent second-order diff. op. Δ such that (i) Δ is differential on $\mathcal{O}(X)$, (ii) $\Delta(1) = 0$, (iii) $\Delta|_{\hbar=0}$ is derivation."

So $\Delta|_{\hbar=0}$ is makes $\mathcal{O}(X)$ into cdga. Principal symbol of $\frac{\partial}{\partial \hbar}|_{\hbar=0}\Delta$ is by defn a biderivation. **Exercise:** It makes $\mathcal{O}(X)[-1]$ into dgla. I.e. it is Pois₀ structure on X.

Defn: $(\mathcal{O}(X), \Delta)$ is a *Beilinson–Drinfeld algebra*. Earlier historical aside: "BV algebra" was taken. B–D used this notion in book on CFT. Name due to Costello–Gwilliam.

Defn:

dgla : L_{∞} :: BD : semistrict homotopy BD

= \hbar -dependent differential Δ , vanishing on constants, such that $\frac{\partial^n}{\partial \hbar^n}|_{\hbar=0}\Delta$ is (n+1)th order diff. op.

Exercise: Princ. symbols of $\frac{\partial^n}{\partial p^n}|_{h=0}\Delta s$ give s.h.Pois₀ str.

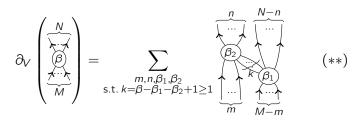
Defn: A *quantization* of a s.h.Pois₀ algebra is a s.h.BD differential with given principal symbols.

Henceforth, \hbar is formal variable, so $\Delta = \sum \frac{\hbar^n}{n!} \frac{\partial^n}{\partial \hbar^n} |_{\hbar=0} \Delta$.

Exercise: A s.h.BD structure on spec $\widehat{\text{Sym}}(V)$ is same as system of $\mathbb{S}_m^{\text{op}} \otimes \mathbb{S}_n$ -invariant degree-(-1) tensors

$$\begin{array}{c} \overset{n}{\overbrace{}} \\ \overset{\beta}{\underset{m}{\longrightarrow}} \\ \overset{\tau}{\underset{m}{\longrightarrow}} \end{array} : V^{\otimes m} \to V^{\otimes n}, \text{ labeled by } \beta \in \mathbb{N}$$

satisfying



 β is *internal genus*. Eqn (**) is homogeneous for *total genus* = internal genus + genus of diagram.

6. Properads

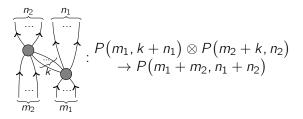
Eqn (**) is not a tree, so dioperads aren't good enough.

Defn (Vallette):

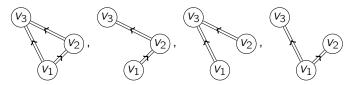
dioperads : directed trees

- :: props : directed acyclic graphs
- :: properads : directed connected acyclic graphs

I.e. S-bimodule with binary compositions



for $k \ge 1$, satisfying associative axioms for diagrams like:



Fact: Properads and props also have model category structures with acyclic=quasiiso and fibration=surjection.

Theorem (Vallette): The functors

Free : {properads} \Leftrightarrow {props} : Forget

are exact.

Warning: {dioperads} \Leftrightarrow {properads} are not exact!

So for dioperad P, "homotopy P-algebra" can depend on whether cofibrant replacement is computed in dioperads or properads/props.

Fact: Properads have bar duals, Koszulity. (Props don't.)

Fact: LB_d is Koszul. Quadratic dual is invFrob_d, controls *involutive* ($\diamondsuit = 0$) *d*-shifted open Frob algs. s.h.Pois_d remains a cofibrant replacement.

Warning: When *d* is odd, $\diamondsuit = 0$ automatically. But when *d* is even, properadic $\operatorname{Frob}_d(m, n) = \mathbb{Q}[x]$, graded by internal genus. When *d* is even, Frob_d is not known to be Koszul.

Remark: By eqn (**), s.h.BD infinitesimal manifolds are \mathbb{D} Frob₀-algebras. Abstract nonsense still gives \mathbb{D} Frob₀ \rightarrow $\mathbb{D}P \otimes P$, now with properadic \mathbb{D} .

Question: Is there a *quantum* AKSZ construction? I.e. $\exists \mathbb{DD} invFrob_d \rightarrow QLoc(M)$ for *M* oriented *d*-dim?

Formula for $\mathbb{D} \operatorname{Frob}_0 \to \mathbb{D} P \otimes P$ is a "sum over diagrams." So this would be a "path integral" quantization.

Answer: One obvious obstruction is involutivity.

Thm: No! When $M = \mathbb{R}$, $\not\exists$ properadic homotopy Frob_1 action on $\operatorname{Chains}_{\bullet}(\mathbb{R})$ sending \checkmark , \checkmark to Thom forms.

Pf: Use $\mathbb{D}LB_1$. Obstruction dual to \bigcirc is $-\frac{1}{12}$, which

is not exact. Details at arXiv:1308.3423.

7. Homological perturbation and Feynman diagrams

Fact (Homological perturbation lemma):

Suppose given a *retraction* (in any additive category)

$$(H_{\bullet},\partial_{H}) \stackrel{\iota}{\underset{\phi}{\longleftrightarrow}} (V_{\bullet},\partial) \stackrel{\bullet}{\bigcirc} \eta \qquad \iota \phi = \mathrm{id}_{H} \\ \phi \iota = \mathrm{id}_{V} - [\partial,\eta]$$

and a *perturbation* $\partial \rightsquigarrow \partial + \delta$ with $(\partial + \delta)^2 = 0$. If $(id_V - \delta \eta)$ is invertible, get new retraction:

$$(H_{\bullet}, \tilde{\partial}_{H}) \xleftarrow{\tilde{\iota} = \iota(\mathrm{id} - \delta\eta)^{-1}}_{\tilde{\phi} = (\mathrm{id} - \eta\delta)^{-1}\phi} (V_{\bullet}, \partial + \delta) \overbrace{}^{\tilde{\eta} = \eta(\mathrm{id} - \delta\eta)^{-1}}$$

with $\tilde{\partial}_H = \partial_H + \iota(\mathrm{id} - \delta\eta)^{-1}\delta\phi$. Note: $(\mathrm{id} - \eta\delta)^{-1} = \mathrm{id} + \eta(\mathrm{id} - \delta\eta)^{-1}\delta$. **Pf:** Check some eqns.

Cor: Consider oscillating measure $\mu = \exp(\frac{i}{\hbar}s)dx_1 \dots dx_n$, with $s = a\frac{x^2}{2} + b(x)$, matrix *a* invertible, and *b* cubic+higher. Stationary phase: if *f* only supported near 0, then mod $O(\hbar^{\infty})$, can work in $V_0 = \mathbb{R}[\![x_1, \dots, x_n]\!] = \widehat{\text{Sym}}(\mathbb{R}^n)$. BV formalism in this case is: $\int f\mu$ depends only on homology class of *f* in chain complex $V = \mathbb{R}[\![x_1, \dots, x_n, \xi_1, \dots, \xi_n]\!]$, where deg $(\xi_i) = 1$, with differential $\partial = \partial_a + \partial_b + \hbar \partial_\Delta$, where $\partial_a = \text{linear differential on } \widehat{\text{Sym}}(\mathbb{R}^n \xrightarrow{a} \mathbb{R}^n)$, $\partial_b = \nabla_x(b) \cdot \nabla_{\xi}$, and $\partial_\Delta = \nabla_x \cdot \nabla_{\xi}$.

Since *a* is invertible, can choose linear retraction $\mathbb{R} \simeq \widehat{\operatorname{Sym}}(\mathbb{R}^n \xrightarrow{a} \mathbb{R}^n)$ with homotopy $\eta = \frac{1}{p}a^{-1}$ on degree-*p* polynomials. Then apply HPL: find that $\frac{\int f\mu}{\int \mu} = \operatorname{ev}_0 \circ (\operatorname{id} - (\partial_b + \hbar \partial_\Delta)\eta)^{-1}(f) = \operatorname{ev}_0 \sum_{k=0}^{\infty} (\partial_b \eta + \hbar \partial_\Delta \eta)^k(f)$. \exists natural diagrammatic interpretation in which $\partial_b \eta$ adds a vertex and $\partial_\Delta \eta$ adds a loop. ev_0 keeps only closed diagrams. Thus get sum of *Feynman diagrams*. arXiv:1202.1554

This works more generally for any s.h.BD structure.

8. Quantum field theory and E_d quantization

Suppose have s.h.BD str on Maps(M_{dR} , spec Sym(V)). I.e. Chains_•(M) \otimes V is properadic \mathbb{D} Frob₀-alg. Get differential Δ on Sym(Chains_•(M) \otimes V)[[\hbar]]; is quasilocal perturbation Δ of $\partial_0 = \partial_{dR} \otimes id_V + id_{Chains} \otimes \partial_V$.

HPL: any retraction $H_{\bullet}(M) \simeq \text{Chains}_{\bullet}(M) \Rightarrow \text{deformed}$ retraction $(\widehat{\text{Sym}}(H_{\bullet}(M) \otimes V) \llbracket \hbar \rrbracket, \tilde{\delta}) \simeq (\widehat{\text{Sym}}(\text{Chains}_{\bullet}(M) \otimes V) \llbracket \hbar \rrbracket, \Delta).$

Defn: Deformed inclusion is *insertion of observables* along choice of $H_{\bullet} \hookrightarrow$ Chains_•. Deformed projection is *expectation value*.

For remainder of talk, $M = \mathbb{R}^d$. $H_{\bullet}(\mathbb{R}^d) \otimes V = V$.

Retraction $H_{\bullet}(\mathbb{R}^d) \simeq \text{Chains}_{\bullet}(\mathbb{R}^d)$ is choice of $z \in \mathbb{R}^d$. $\widehat{\text{Sym}}(V) \to \widehat{\text{Sym}}(\text{Chains}_{\bullet}(\mathbb{R}^d) \otimes V)[\![\hbar]\!]$ is *insertion at z*. **Defn:** Choose z_1, \ldots, z_n . Define $\star_{z_1,\ldots,z_n} : \widehat{\text{Sym}}(V)^{\otimes n} \to \widehat{\text{Sym}}(V)[\![\hbar]\!]$ by: insert $f_i \in \widehat{\text{Sym}}(V)$ at z_i ; multiply outputs with commutative product in $\widehat{\text{Sym}}(\text{Chains}_{\bullet}(\mathbb{R}^d) \otimes V)[\![\hbar]\!]$; take expectation value of product. This is the *n*-point function.

Thm: Suppose all z_i distinct. The *large volume limit* is $\lim_{r\to\infty} \star_{rz_1,\ldots,rz_n}$. If $\mathbb{D}\operatorname{Frob}_0 \curvearrowright \operatorname{Chains}_{\bullet}(M) \otimes V$ factors through $\operatorname{QLoc}(M) \otimes \operatorname{End}(V)$, then large volume limit converges in power series topology.

Thm modulo details (I've checked everything when d = 1): Large-volume limit of *n*-point function is *n*-ary operation in an E_d -algebra structure on $\widehat{\text{Sym}}(V)[[\hbar]]$.

Cor: Suppose have \mathbb{DD} invFrob_d $\rightarrow \mathbb{Q}$ Loc(\mathbb{R}^d) sending \checkmark , \checkmark to Thom forms, with *properadic* bar duals. Earlier abstract nonsense: $\forall \mathbb{D}$ Frob_d-algebras V, get \mathbb{D} Frob₀ \rightarrow \mathbb{Q} Loc(\mathbb{R}^d) \otimes End(V). By above Thm, $\widehat{\text{Sym}}(V)[[\hbar]]$ is E_d alg; we started with s.h.Pois_d-alg $\widehat{\text{Sym}}(V)$.

Calculation: this E_d structure is deformation in the direction of given s.h.Pois_d structure (i.e. get back s.h.Pois_d structure by taking associated graded). Thus *quasilocal* homotopy invFrob_d structures on Chains_•(\mathbb{R}^d) give universal E_d quantizations.

Cor: Above was with completed symmetric algebras. But all formulas restrict also to non-completed symmetric algebras. Any Pois_d alg has resolution as s.h. Pois_d structure on a non-completed symmetric algebra. So get full quantization functor { Pois_d algebras} \rightarrow { E_d algebras}.

When $d \ge 2$, this is essentially formality of E_d operad.

Remark: $H_{\bullet} QLoc(\mathbb{R}^d) = invFrob_d$. So existence of \mathbb{DD} invFrob_d $\rightarrow QLoc(\mathbb{R}^d)$ is formality of $QLoc(\mathbb{R}^d)$.

Conj: \exists canonical homotopy equiv between space of formality morphisms of operad E_d and space of formality morphisms of properad $QLoc(\mathbb{R}^d)$.

Above outlines one direction. In converse, universal E_d quantization \Rightarrow quantization of Maps $(M_{dR}, X) \Rightarrow$ expand in Feynman diagrams and get some operations on Chains (\mathbb{R}^d) , which are probably quasilocal homotopy invFrob_d action.

Thm: Recall that properad $QLoc(\mathbb{R})$ is not formal. Con-

sider properad $P = LB_1 / \bigcirc$. {Homotopy *P*-algebras} \subseteq

{s.h.Pois₁ infinitesimal manifolds} as those satisfying some equations. For these Poisson manifold, \exists canonical wheel-free quantization, since obstruction theory gives canonical map $\mathbb{D}P \to QLoc(\mathbb{R})$. **Conj:** This is all Poisson mans with wheel-free quantization.