arXiv:1409.5934, w/ Brandenburg and Chirvasitu.

1. Categorified linear algebra

Fix field \mathbb{K} (arbitrary characteristic).

Idea: Colimits, in particular \sqcup or \oplus , categorify +. Hence:

Defn: Would like bicategory "COCOMPLETE_K" with objects cocomplete K-linear categories,
1-morphisms cocontinuous K-linear functors,
2-morphisms natural transformations.

But this leads to set-theoretic difficulties: two cocont's functors can have "more than a set" of natural transformations.

So ask for a set-theoretic technical condition, that objects be *locally presentable*:

objects' cocomplete K-linear categories that are generated under colimits by some *set* of objects, such that for each generating object X there is a cardinal κ s.t. hom(X, -) preserves colimits of diagrams in which every set of $< \kappa$ objects in the diagram has an upper bound in the diagram.

(Second condition says that every object is "set-sized".)

This is the bicategory $PRES_{\mathbb{K}}$. (Lemma: Hom cats in $PRES_{\mathbb{K}}$ are locally small, so $PRES_{\mathbb{K}}$ is a bicat.) It includes all examples, and all constructions performed in larger non-bicat COCOMPLETE_{\mathbb{K}} in fact stay in $PRES_{\mathbb{K}}$.

Write HOM(\mathcal{C}, \mathcal{D}) for hom cat between $\mathcal{C}, \mathcal{D} \in \mathsf{PRES}_{\mathbb{K}}$.

Remark: Every $F \in HOM(\mathcal{C}, \mathcal{D})$ has a right adjoint among all functors (not nec. among cocont's functors).

Defn: Tensor product of $C, D \in \mathsf{PRES}_{\mathbb{K}}$ is $C \boxtimes D$ s.t. $\forall \mathcal{E}, \mathsf{HOM}(C \boxtimes D, \mathcal{E}) = \{\mathsf{functors} \ F : C \times D \to \mathcal{E} \text{ s.t.} F(C, -) : D \to \mathcal{E} \text{ and } F(-, D) : C \to \mathcal{E} \text{ are } \mathbb{K}\text{-linear and cocont's } \forall C \in C, D \in D\}.$

Lemma (Kelly, ...): $\mathcal{C} \boxtimes \mathcal{D}$ exists. $HOM(\mathcal{C}, \mathcal{D}) \in PRES_{\mathbb{K}}$. Hom-tensor adjunction.

Unit for \boxtimes is VECT = VECT_K.

Examples:

• For A, B algs/K, $MOD_A, MOD_B \in PRES_K$. Then $MOD_A \boxtimes MOD_B = MOD_{A \otimes B}$ and $HOM(MOD_A, MOD_B) =$ $_A MOD_B = \{bimodules\}$. This is "Eilenberg–Watts thm."

• For *C* a coalgebra/ \mathbb{K} , COMOD^{*C*} \in PRES_{\mathbb{K}}. But \boxtimes , HOM are hard to describe: \nexists an "Eilenburg–Watts thm" for coalgebras.

• For X a stack/ \mathbb{K} , QCOH(X) \in PRES_K. In general, \boxtimes , HOM hard to describe, but do have QCOH(X) \boxtimes MOD_A = QCOH(X×_{Spec K}Spec A) for A commutative.

Thm (Bird): $PRES_{\mathbb{K}}$ has all limits and colimits. Limits = limits in CAT. Colimits = limits along right adjoint functors in CAT. Universal property of colimit applies among all cocomplete cats, not just loc. pres. ones.

Examples:

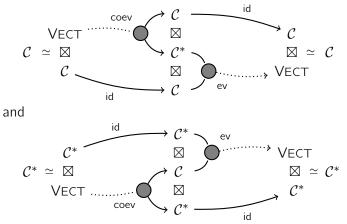
• COMOD^C = $\varinjlim \text{COMOD}^{C_i}$ along diagram of all finitedim sub-coalgebras $C_i \subseteq C$. This is Sweedler's "fundamental thm of coalgebras." Note: if dim $C_i < \infty$, $\text{COMOD}^{C_i} = \text{MOD}_{C_i^*}$.

• QCOH(X) = $\lim_{i \to i} \operatorname{QCOH}(\operatorname{Spec} A_i)$ for $X = \lim_{i \to i} \operatorname{Spec} A_i$ an open cover by affines.

2. Dualizability

Defn: Let $\mathcal{C}^* = \text{HOM}(\mathcal{C}, \text{VECT})$. \mathcal{C} is *dualizable* if the canonical map $\mathcal{C}^* \boxtimes \mathcal{C} \to \text{HOM}(\mathcal{C}, \mathcal{C})$ is an equiv.

Lemma: It suffices to check that $id_{\mathcal{C}}$ is in the essential image of the map. Defn agrees with the usual one in terms of evaluation and coevaluation maps, i.e. that $\exists coev : VECT \rightarrow \mathcal{C} \boxtimes \mathcal{C}^*$ s.t.



are identities.

Defn: $X \in C$ is *compact projective* if hom(X, -) : $C \rightarrow VECT$ is cocontinuous. (Note: this interprets "projective" as meaning "hom(X, -) preserves coequalizers." In non-abelian categories, this is stronger than "hom(X, -) preserves epimorphisms".)

Lemma (Kelly, ...): If C is locally presentable, its full subcat C^{cp} of compact projectives is essentially small.

Defn: C has enough compact projectives if C is generated by its compact projectives under colimits.

Thm (B–C–JF): If $\mathcal{C} \in \mathsf{PRES}_{\mathbb{K}}$ has enough compact projectives, then it is dualizable.

Proof outline: Then $C = FUN_{\mathbb{K}}((\mathcal{C}^{cp})^{op}, VECT)$ and $\mathcal{C}^* = FUN_{\mathbb{K}}(\mathcal{C}^{cp}, VECT)$ and the "generalized Eilenburg–Watts thm":

HOM(FUN_K(A, VECT), FUN_K(B, VECT)) = FUN_K($A^{op} \times B$, VECT) = FUN_K(A^{op} , VECT) \boxtimes FUN_K(B, VECT). \Box

Notation advocacy: $C = FUN_{\mathbb{K}}((C^{cp})^{op}, VECT)$ is a version of "Yoneda embedding" $X \mapsto hom(-, X)$. In general, Yoneda embedding should always be called " \sharp ", which is first letter of "Yoneda" in Hiragana.

Defn: Affine algebraic group is *linearly reductive* if its representations are completely reducible. *Virtually linearly reductive* if has lin. red. finite-index subgroup.

Examples:

• Finite G in characteristic dividing |G| is virtually linearly reductive but not linearly reductive.

• \mathbb{G}_a is not virtually linearly reductive.

Cor of thm: X an affine scheme acted on by G a vir. lin. red. group. Then QCOH([X/G]) is dualizable.

Proof outline: Donkin: *G* is vir. lin. red. iff REP(G) has enough cpt proj's. Serre: *X* is affine iff QCOH(X) has enough cpt proj's. Some unpacking $\Rightarrow QCOH([X/G])$ has enough cpt proj's. \Box

Remark: Dualizability survives field extensions.

Remark (Donkin): TFAE: (i) G is vir. lin. red. (ii) REP(G) has *any* non-zero projective. (iii) *Every* injective is projective.

3. Nondualizability

Thm (B–C–JF): For C a coalgebra, COMOD^C is dualizable iff it has enough projectives.

Proof outline: (\Leftarrow) COMOD^C has enough proj's iff it has enough cpt proj's. (\Rightarrow) The fun part:

• Recall $COMOD^{C} = \varinjlim COMOD^{C_{i}}$ for C_{i} the finitedim subcoalgs of C. Then $(COMOD^{C})^{*} \boxtimes COMOD^{C} =$ $\varinjlim((COMOD^{C})^{*} \boxtimes COMOD^{C})$, so its essential image in $\operatorname{END}(COMOD^{C})$ consists of all endofunctors of form F = $\varinjlim F_{i}$ s.t. F_{i} factors through $COMOD^{C_{i}}$.

• Lin: If COMOD^C does not have enough projectives, then it has a simple S s.t. $\forall i, \exists$ essential projection $T_i \twoheadrightarrow S$ such that $T_i \notin \text{COMOD}^{C_i}$. • Suffice to show $\forall F, \not\exists \theta : F \xrightarrow{\sim} id$. Since $F = \varinjlim F_i$ and $S \neq 0$, suffice to show $\forall i, \theta_i = 0 : F_i(S) \rightarrow S$.

 $\theta_i(T_i)$ cannot be onto, since $T_i \notin \text{COMOD}^{C_i}$. Since $T_i \twoheadrightarrow S$ is essential, $F(T_i) \to S$ is 0. \Box

Thm (B–C–JF): Nevertheless, $((COMOD^C)^*)^* = COMOD^C$ if dim $C \leq \aleph_0$. Unknown for dim $C > \aleph_0$.

Thm (B–C–JF): Suppose X a scheme contains closed dim>0 subscheme Y s.t. $f : Y \hookrightarrow \mathbb{P}^N$ closed. Then QCOH(X) is not dualizable.

Proof outline:

• If QCOH(X) is dualizable, so is QCOH(Y) for any closed subscheme $Y \subseteq X$.

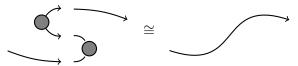
• Similar proof as above, using $\bigoplus f^*\mathcal{O}(n)$ s. \square

Conj: QCOH(X) dualizable iff X affine. **Stronger conj:** C dualizable iff has enough cpt proj's.

4. Comments on quantum field theory

A *categorified quantum field theory* uses categories in place of Hilbert spaces. Categorified qfts come from extended qfts (as codim-2 part) and from relative qfts (as twists/anomalies).

Dualizability ev/coev zig-zag = Morse handle cancelation:



Hence categorified *topological* qfts only use dualizable categories.

 $\operatorname{Rep}(G) \leftrightarrow$ pure (topological) gauge theory.

 $QCOH(X) \leftrightarrow (topological)$ sigma model with target X.

 $QCOH([X/G]) \leftrightarrow$ gauge theory with matter.

Our nondualizability results \Rightarrow such theories can only be described by $PRES_{\mathbb{K}}$ when G is virtually linearly reductive and X does not contain a projective subvariety.

OTOH, Ben-Zvi–Francis–Nadler: the *derived* categories corresponding to all these examples are dualizable .

Moral: Quantum field theory requires derived categories.