Talk based on arXiv:1507.06297.

0. Talk punchline

\mathbb{C}	Orientations	Hermiticity
SUPERVECT	Spin structures	Spin-Statistics

1. Local structures on manifolds

Let $MAN_d = \{d\text{-manifolds and local diffeomorphisms}\}$. (Topologized $\rightsquigarrow (\infty, 1)$ -category.) Let \mathfrak{X} an ∞ -topos.

Defn: Topological local structure = sheaf \mathcal{G} : MAN_d $\rightarrow \mathfrak{X}$.

Non-e.g.: $M \mapsto \{ \text{metrics on } M \}$ is a sheaf on the strict category MAN^{strict} but not on the $(\infty, 1)$ -category.

Lemma ("Cobordism Hypothesis"): Topological local structures valued in \mathcal{X} are classified by $\mathcal{X}^{O(d)} = {\mathcal{X}\text{-objects}}$ equipped with O(d)-action $\}$.

Pf: Use $O(d) \simeq \hom_{MAN_d}(\mathbb{R}^d, \mathbb{R}^d)$ together with existence of good open covers. \Box

E.g.: Given $O(d) \curvearrowright X$ in $\mathfrak{X}^{O(d)}$, corresponding sheaf is $M \mapsto \operatorname{maps}_{O(d)}(\operatorname{Fr}(M), X)$.

- Trivial action \rightsquigarrow topological sigma-model.
- {*G*-tangential structures} $\iff X = O(d)/G$.
- {orientations} $\iff X = \pi_0(O(\infty)) = \mathbb{Z}/2.$
- {spin strs} $\leftrightarrow X = \pi_{\leq 1}(O(\infty)) = \mathbb{Z}/2 \times B(\mathbb{Z}/2).$

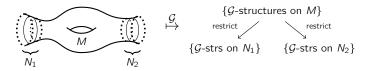
Why allow other topoi \mathcal{X} ? So that local structures can vary in moduli. If *G* is algebraic group, then $\text{Loc}_G(-)$ is valued in algebraic stacks. If *G* is super Lie group, then {*G*-bundles with connection} is valued in topos of sheaves on site of supermanifolds (and smooth maps).

2. Locally structured bordism category

Let $BORD_d = BORD_d^{smooth}$ [Calaque–Scheimbauer, Lurie]. I.e. *k*-morphisms are *k*-dim smooth cobordisms between (k - 1)-morphisms, with no extra local data.

Let SPANS_d(\mathfrak{X}) be sym mon (∞ , d)-cat with k-morphisms = k-fold spans in \mathfrak{X} , \circ = fiber product [Haugseng].

Given \mathcal{G} : MAN_d $\rightarrow \mathfrak{X}$, can assign to each bordism in BORD_d a span in \mathfrak{X} :



This defines a sym mon functor \mathcal{G} : $BORD_d \to SPANS_d(\mathfrak{X})$. Sheaf condition \Rightarrow composition. Topological (i.e. use $(\infty, 1)$ -cat MAN_d, not just MAN_d^{strict}) \Rightarrow units. **Prop [Li-Bland]:** When \mathfrak{X} is ∞ -topos, SPANS_d(\mathfrak{X}) is an (∞, d) -category *internal to* \mathfrak{X} , i.e. *k*-morphisms can vary in \mathfrak{X} -parameterized moduli. \Box

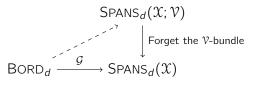
Defn: Treat BORD_d as \mathcal{X} -internal category via unique geometric morphism SPACES $\leftrightarrows \mathcal{X}$. Let $\mathcal{X}_{\{\mathsf{pt}\}/} = \{\mathsf{pointed} \ \mathcal{X}\text{-objects}\}$. ($\{\mathsf{pt}\} \in \mathcal{X}$ is initial object.) The *G*-structured bordism category is the pullback of \mathcal{X} -internal categories

$$\begin{array}{ccc} \operatorname{BORD}_d^{\mathcal{G}} & \longrightarrow \operatorname{SPANS}_d(\mathfrak{X}_{\{\operatorname{pt}\}/}) \\ & & & & \downarrow \\ & &$$

(Internal \sim local structure can vary in moduli.)

Defn: Let \mathcal{V} be \mathfrak{X} -internal sym mon (∞, d) -category. A \mathcal{V} -valued \mathcal{G} -structured field theory is functor of \mathfrak{X} -internal sym mon (∞, d) -categories $\mathsf{BORD}_d^{\mathcal{G}} \to \mathcal{V}$.

Lemma: Let $\text{SPANS}_d(\mathfrak{X}; \mathcal{V}) = (\infty, d)$ -category whose *k*-morphisms are *k*-fold spans in \mathfrak{X} equipped with bundles of *k*-morphisms in \mathcal{V} [Haugseng]. \mathcal{V} -valued \mathcal{G} -structured field theory = lift of (non-internal!) functors:



Pf: Unpack some adjunctions. □

Question: Explain "qfts fibered over \mathcal{G} " as " \mathcal{G} - \mathcal{V} -twisted" field theories a la Stolz–Teichner.

3. Hermitian field theory

In SPACES, sheaf $Or = \{ \text{orientations} \}$ is classified by unique $\mathbb{Z}/2\text{-torsor}$. Let $\mathfrak{X} = \text{STACKS}_{\mathbb{R}}$. Then $\text{Spec}(\mathbb{C})$ is another $\mathbb{Z}/2\text{-torsor}$, and is the unique nontrivial one.

Defn: Sheaf Her : $MAN_d \rightarrow STACKS_{\mathbb{R}}$ of *Hermitian struc*tures is classified by $Spec(\mathbb{C}) \in (STACKS_{\mathbb{R}})^{O(d)}$.

Lemma:
$$\operatorname{Her}(-) = \frac{\operatorname{Or}(-) \times \operatorname{Spec}(\mathbb{C})}{\mathbb{Z}/2}.$$

Recall stack of categories (i.e. STACKS_R-internal) category QCOH : $A \mapsto MOD_A$. Normal to demand that for *quantum field theory*, *d*-manifolds \mapsto numbers, (d - 1)manifolds \mapsto vector spaces. In our case, this becomes:

$$\Omega^{d-1}\mathcal{V} = \mathsf{QCOH}.$$

(Sym mon (∞, k) -cat $\mathcal{C} \sim$ sym mon $(\infty, k-1)$ -cat $\Omega \mathcal{C} =$ End_{\mathcal{C}}(1) called its *looping*. **E.g.:** Ω QCOH = \mathcal{O} .) **E.g.:** Let $Z : \text{BORD}_d^{\text{Her}} \to \mathcal{V}$.

• Suppose M^d is connected orientable. Then $Her(M) \cong$ Spec(\mathbb{C}), but not canonically. $Z(M) \in \mathcal{O}(\text{Her}(M))$. Each orientation of $M \rightsquigarrow Z(M) \in \mathbb{C}$; orientation reversal = complex conjugation.

• Suppose N^{d-1} is connected orientable. Each orientation gives iso $\operatorname{Her}(N) \cong \operatorname{Spec}(\mathbb{C})$, hence $Z(N) \in$ QCOH(Spec(\mathbb{C})) = VECT_{\mathbb{C}}. $Z(N \times \mathcal{Y})$ is a nondegenerate symmetric sesquilinear form on Z(M). (Not necessarily positive definite.) Hence name "Hermitian."

Punchline: "Oriented" and "Hermitian" are the two versions of "étale-locally-over- \mathbb{R} oriented."

4. Categorified torsors

Why does the nontrivial $\mathbb{Z}/2$ -torsor over \mathbb{R} exist?

0. \mathbb{C} is non-zero finite dim com \mathbb{R} -algebra.

1. (Field) Any non-zero map $\mathbb{C} \to A$ of finite dim com \mathbb{R} -algebras is injective.

2. (Algebraically closed) Any non-zero finite-dim com \mathbb{R} -algebra A admits $A \to \mathbb{C}$.

3. (Galois) $MOD_{\mathbb{R}} = MOD_{\mathbb{C} \rtimes Gal(\mathbb{C}/\mathbb{R})}$.

Then *G*-torsors (i.e. $G \curvearrowright T \to \operatorname{Spec}(\mathbb{R})$ s.t. $T/G \xrightarrow{\sim}$ $\operatorname{Spec}(\mathbb{R})$ and $T \times G \xrightarrow{\sim} T \times_{\operatorname{Spec}(\mathbb{R})} T$ are classified by maps(B Gal(\mathbb{C}/\mathbb{R}), BG).

Defn: A categorified com \mathbb{R} -algebra is a (nice!) \mathbb{R} -linear sym mon cat. **E.g.:** {com \mathbb{R} -algs} \hookrightarrow {cat com \mathbb{R} -algs} via $A \mapsto (MOD_A, \otimes_A)$. **Defn:** CATSTACKS_R = stacks on site of cat com \mathbb{R} -algs. **E.g.:** QCOH : $\mathcal{C} \mapsto \mathcal{C}$.

Defn: Cat com \mathbb{R} -alg ($\mathcal{C}, \otimes, \ldots$) is finite dim if (a) $\mathcal{C} \simeq$ MOD_A for finite dim associative alg A (so that underlying cat is finite-dim), and (b) projective \Rightarrow dualizable (so that "internal" and "external" notions of "finite" agree).

E.g.: SUPERVECT_{\mathbb{C}}, as *non-sym* monoidal category, is $\operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}/2)$. Its braiding is determined by $\sigma = -1$: $\Pi \otimes$ $\Pi \to \Pi \otimes \Pi$. ($\Pi = \text{sign rep of } \mathbb{Z}/2$.)

Thm: I. The categorified algebraic closure of $\mathbb{R} \equiv VECT_{\mathbb{R}}$ is SUPERVECT_C. II. The extension is Galois with Galois group Gal(SUPERVECT_C/ \mathbb{R}) = $\mathbb{Z}/2 \times B(\mathbb{Z}/2)$.

Pf: I. Deligne's "existence of super fiber functors" plus small modifications. II. The $\mathbb{Z}/2$ acts by complex conjugation. The B($\mathbb{Z}/2$) acts by " $(-1)^{f}$ " = natural auto of identity s.t. $(-1)^{f}|_{1} = +1$ and $(-1)^{f}|_{\Pi} = -1$. \Box

SUPERVECT_R, SUPERVECT_C, and "SUPERVECT_H", which imal separable subextension is VECT_p \rightarrow SUPERVECT_p. is $VECT_{\mathbb{R}} \boxplus MOD_{\mathbb{H}}$ with interesting sym mon str.

5. Spin-statistics field theories

Take $\mathfrak{X} = CATSTACKS_{\mathbb{R}}$. There is a canonical nontrivial $\pi_{\leq 1}O(\infty) = \mathbb{Z}/2 \times B(\mathbb{Z}/2)$ torsor, namely Galois action on Spec(SUPERVECT_{\mathbb{R}}). Just as in Hermitian case, corresponding local structure SpinStat : $MAN_d \rightarrow \mathfrak{X}$ is (categorified) étale-locally equivalent to Spin = {spin structures}. Moreover, just as in Hermitian case:

$$SpinStat(-) = \frac{Spin(-) \times Spec(SUPERVECT_{\mathbb{C}})}{\mathbb{Z}/2 \times B(\mathbb{Z}/2)}$$

How does $\mathbb{Z}/2 \times B(\mathbb{Z}/2)$ act on Spin(–)? The $\mathbb{Z}/2$ part acts by orientation reversal. The $B(\mathbb{Z}/2)$ part acts by the nontrivial Spin automorphism of a spin manifold, called " \mathscr{L} " or "rotate by 360°". Let N be Spin; then the mapping cylinder of N is the Spin manifold $N \times [0, 1]$ with Spin structure $N \times \mathfrak{L}$. N.b.: $\mathfrak{L} = \mathfrak{L}$ (belt trick).

Suppose dim N = d - 1 and Z is a SpinStat field theory. Then $Z(N) \in QCOH(SpinStat(N)) = disjoint union of$ Spec(SUPERVECT_C)s, one for each $(\mathbb{Z}/2 \times B(\mathbb{Z}/2))$ -orbit in Spin(N). So for each spin structure, Z(N) gives a complex supervector space. Compatibility with $\mathbb{Z}/2$ -action \Rightarrow Hermitian supervector space.

Defn: In a field theory valued in supervector spaces, a fermion is a (-1)-eigenstate of $(-1)^{f}$. In a spin field theory, a *spinor* is a (-1)-eigenstate of \mathscr{L} .

In a SpinStat field theory, $\mathcal{L} = (-1)^{f}$, i.e. they are spin*statistics* in the sense that fermions=spinors.

6. A topological spin-statistics theorem

There are spin theories that are not spin-statistics, and super field theories that are not spin. However:

Thm [TJF]: If Z is étale-locally-spin TFT over \mathbb{R} such that the unoriented theory $\int_{\text{spin structures}} Z$ is positive, then Z is Hermitian and spin-statistics.

(Hermitian + positive = *unitary*.)

7. Conjectures about categorified Galois groups

Conj [TJF]: Under further categorification, the infinitely*categorified* absolute Galois group of \mathbb{R} is $O(\infty)$.

Conj [Ostrick]: If $p \geq 3$, the cat alg closure of $\overline{\mathbb{F}}_p$ is the Verlinde category VER_p , a mod-p version of SU(2)-atlevel-(p-2). **Conj [Etingof]:** Weirder p = 2 case.

Exercise: VECT_R has five field extensions: VECT_R, VECT_C, **Rmk:** Extension VECT_p \rightarrow VER_p is not separable. Max-So SUPERVECT is still the universal torsor.