Details at arXiv:1307.5812. Everything is dg over \mathbb{R} .

1. Motivation from algebraic topology

Let *M* be a *d*-dim oriented smooth manifold. Its de Rham homology $H_{\bullet}(M)$ is a graded commutative shifted Frobenius algebra (open, i.e. nonunital, if *M* not compact). I.e. $H_{\bullet}(M)$ is dg com coalg, and $H_{\bullet}(M)[-d]$ is dg com alg, and these are compatible.

Question: Can we lift this structure to the chain level?

First try: Take "chains" to be $C_{\bullet}(M) = \Omega_{cpt}^{d-\bullet}(M)$, compactly supported de Rham forms. This has strict (shifted) com algebra structure. But no strict comult $C_{\bullet}(M) \rightarrow C_{\bullet}(M)^{\otimes 2} = \Omega_{cpt}^{d-\bullet}(M^2)$ (projective \otimes), since would need distributions on diagonal $M \hookrightarrow M^2$. There is homotopy-coalg structure, but a priori unclear how coherent are the homotopies for Frobenius axiom.

Second try: Take "chains" to be $C_{\bullet}(M) = \Omega_{cpt,dist}^{d-\bullet}(M)$, comp. supp. *distributional* de Rham forms. Now have strict comultiplication, but problems with multipliation.

Abstract nonsense try: Take any model of chains, and choose giso $C_{\bullet}(M) \simeq H_{\bullet}(M)$. Use some version of homotopy transfer theory. **Why fails?** If you did this with just (co)mult, you would never see the Massey (co)products.

2. Precisifying the problem

Defn: Associative algebras have compositions for each arrangement of beads on a string. Similarly:

 E_d algebras \leftrightarrow beads on \mathbb{R}^d operads \leftrightarrow rooted trees dioperads \leftrightarrow directed trees properads \leftrightarrow connected acyclic directed graphs props \leftrightarrow acyclic directed graphs

E.g. a properad P consists of $\mathbb{S}_m^{op} \times \mathbb{S}_n$ -modules P(m, n) of "*m*-to-*n* operations" and binary compositions

for $k \ge 1$, satisfying associative axioms for diagrams like:

E.g.: *V* a chain complex. End(*V*)(*m*, *n*) = hom($V^{\otimes m}, V^{\otimes n}$) defines a dioperad/properad/prop. An *action* of *P* on *V* (equiv, *V* is a *P*-algebra) is a morphism $P \rightarrow \text{End}(V)$.

Defn: Dioperad/properad/prop Frob_d of open d-shifted commutative Frobenius algebras has generators:

and relations:

$$= , = (-1)^d , = (-1)^d .$$

Thm (Vallette et al): {dioperads}, {properads}, ..., are model categories with fibration=surjection and acyclic=qiso.

Defn: A *homotopy action* of *P* is an action of any cofibrant replacement h *P* (choice irrelevant up to homotopy).

Warning: Free : {properads} \rightarrow {props} is exact, but Free : {dioperads} \rightarrow {props} is not exact. So propic and properadic notions of "homotopy *P*-algebra" are the same, but dioperadic notion is generally different.

Question redux: Choose chain model $C_{\bullet}(M)$. Does h Frob_d act on $C_{\bullet}(M)$ inducing Frob_d action on $H_{\bullet}(M)$?

Avoiding abstract nonsense failure: Within $\operatorname{End}(C_{\bullet}(M))$ is subproperad (not subprop) $\operatorname{QLoc}(M)$ of operations that "expand support only a finite amount." (In detail: for any complete metric on M, consider maps $\Omega_{cpt}^{d-\bullet}(M)^{\otimes m} \rightarrow \Omega_{cpt}^{d-\bullet}(M)^{\otimes n}$ with integral kernel supported in any finite-radius nbhd of diagonal M in M^{m+n} .)

Question redux redux: h Frob_d \rightarrow QLoc(M)?

3. Positive and negative results

Thm: With *dioperadic* interpretation, there is canonical contractible space of maps $h \operatorname{Frob}_d \to \operatorname{QLoc}(M)$ inducing Frob_d action on $H_{\bullet}(M)$.

Proof: (co)bar construction \Rightarrow explicit presentation of h Frob_d. Build action inductively; at each step, look at obstructions. Calculate H_•(QLoc(M)); calculate degrees of obstructions; see they must vanish.

Thm: With *properadic* interpretation, $M = \mathbb{R}$ fails.

Proof: Frob₁ is Koszul, hence get small model of h Frob₁.

Obstruction dual to $\int_{12}^{112} is -\frac{1}{12}$, which is not exact. Details at arXiv:1308.3423.

4. Motivation from field theory

Defn: Classical Field Theory = the study of those PDE determined by "least action" variational principles = geometry of critical loci in Maps(spacetime, target).

(N.B. target is usually a stack; these days derived, too.)

Defn: $QFT = \text{computing } \int (\text{observable}) \exp(\frac{i}{\hbar}(\text{action})),$ with domain of integration Maps(spacetime, target).

Classical BV formalism: Derived critical locus of any function has symplectic form of hom degree +1, i.e. Poisson bracket of deg -1 (conventions: deg(∂) = -1).

BV say: Any dg manifold with deg-(-1) Poisson bracket should be considered as a critical locus.

Quantum BV formalism: Twisted de Rham complex for oscillating measure $\exp(\frac{i}{\hbar}(\operatorname{action}))$ is graded com alg, with \hbar -dependent second-order diff. op. Δ s.t. (i) Δ is differential, (ii) $\Delta(1) = 0$, (iii) $\Delta|_{\hbar=0}$ is derivation.

BV say: Any graded manifold with such Δ should be considered as an oscillating integral problem.

Historical aside: Batalin–Vilkovisky were physicists, working only with $\mathbb{Z}/2$ ("super") gradings. What's called a "BV algebra" in mathematics is not what B–V discovered. It is (almost) the same with $\mathbb{Z}/2$ gradings, but different with \mathbb{Z} gradings. Costello–Gwilliam name what B–V used "BD algebra," after Beilinson–Drinfeld, who used correct gradings in book on CFT.

Polemical aside: Actual derived critical loci / twisted de Rham complexes are always *cotangent bundles*. Why not work with those? Because of dualities/symmetries/gauge equivalence. Usual BV formalism keeps requirement that bracket be *symplectic*, i.e. nondegenerate.

But *symplectic is wrong*. Locally, Poisson = symplectic with parameters, and we know should study geometry in families. Globally, can have rich dualities/etc., so "families of symplectics" isn't good enough: need Poisson.

Defn: Semistrict homotopy $Pois_d$ structure on graded algebra A is system of multiderivations making A[1 - d] into L_{∞} alg. "Semistrict" = don't weaken Leibniz.

s.h.BD structure on graded algebra A is differential Δ on $A[[\hbar]]$ such that $\frac{\partial^n}{\partial \hbar^n}|_{\hbar=0}\Delta$ is (n+1)th order diff. op.

Exercise: Princ. symbols of $\frac{\partial^n}{\partial \hbar^n}|_{\hbar=0}\Delta$ give s.h.Pois₀ str.

Finding Δ for prescribed s.h.Pois₀ str is *quantization*.

Challenge: Find interesting s.h.Pois₀/s.h.BD structures on mapping spaces. Interpret as classical/quantum FT.

5. Connection to dioperads and properads

Focus on "infinitesimal manifolds" of type Spec $\widehat{Sym}(V)$.

Exercise: A s.h.Pois_d structure on $\widehat{\text{Sym}}(V)$ is a system

satisfying (signed) symmetry rules and

$$\partial_{V} \begin{pmatrix} N \\ \ddots & \ddots \\ M \end{pmatrix} = \sum_{m,n,M-m,N-n \ge 1} (\#) \begin{pmatrix} n & n & n \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ \dots & \dots & \dots \\ m & M-m \end{pmatrix}$$
(*)

 N_{-n}

Coeffs (#) depend on conventions. Average over permutations of input/output strands, with signs when d = odd.

Defn: The *bar dual* $\mathbb{D}P$ of *P* is freely generated by $P^*[-1]$ with differential dual to \sum (binary compositions) : $P^{\otimes 2} \rightarrow P$ (extend as derivation; associativity $\Leftrightarrow \partial^2 = 0.$)

E.g.: Equation (*) says V is alg for *dioperadic* \mathbb{D} Frob_d, and also for *properadic* \mathbb{D} invFrob_d = $\mathbb{D}(\operatorname{Frob}_d/(\diamondsuit))$.

Exercise: s.h.BD str \leftrightarrow properadic \mathbb{D} Frob₀ alg.

Abstract nonesense: There are canonical "sum-overdiagrams" maps $\mathbb{D}\operatorname{Frob}_0 \to h P \otimes \mathbb{D}P$ for any P.

Application: Suppose target = Spec $\widehat{\text{Sym}}(V)$ is s.h.Pois_d, and *M* is *d*-dim oriented. Then Maps $(M_{dR}, \text{Spec } \widehat{\text{Sym}}(V)) =$ derived space of loc. constant maps $M \to \text{Spec } \widehat{\text{Sym}}(V)$ = Spec $\widehat{\text{Sym}}(C_{\bullet}(M) \otimes V)$ is s.h.Pois₀, using canonical quasilocal dioperadic h Frob_d structure on $C_{\bullet}(M)$.

This is the *Poisson AKSZ construction*. It generalizes Alexandrov–Kontsevich–Schwarz–Zaboronsky's version for symplectic target.

6. On quantization

Suppose $C_{\bullet}(\mathbb{R}^d)$ has quasilocal h invFrob_d action. Then get s.h.BD structure on Spec $\widehat{\text{Sym}}(C_{\bullet}(\mathbb{R}^d) \otimes V)$ for Vs.h.Pois_d. Method of Feynman diagrams (= homological perturbation lemma = spectral sequences) applies, and gives notions of "insertion of observables," "expectation value," and "*n*-point function."

Thm modulo checking some details: Large-volume limit of *n*-point functions give $\widehat{\text{Sym}}(V)[[\hbar]]$ an E_d algebra structure; thus quasilocal hinvFrob_d actions on $C_{\bullet}(\mathbb{R}^d)$ determine universal Pois_d $\rightarrow E_d$ quantization/formality.