Details are at arXiv:1307.5812.

For simplicity, this talk is over $\mathbb{R}.\ \exists\ a\ \mathbb{Q}$ version.

1. Punchline of the talk

Conj: For $d \ge 2$, formality of the operad E_d is equivalent to formality of the properad $QLoc(\mathbb{R}^d)$ satisfying:

 $QLoc(\mathbb{R}^d)(m, n)[-dn] = \{ \text{cochains on } \mathbb{R}^{d(m+n)} \text{ with support in a finite-radius neighborhood of } diag(\mathbb{R}^d) \hookrightarrow \mathbb{R}^{d(m+n)} \} \subseteq \Omega^{-\bullet}(\mathbb{R}^{d(m+n)})$

(Technical convenience: QLoc(m, n) = 0 if mn = 0.)

Defn: An *associative algebra* has compositions for each way to put beads on a directed line. An *operad* has compositions for rooted trees. A *prop* has compositions for directed acyclic graphs. A *properad* has compositions for connected directed acyclic graphs.

I.e. a properad *P* has: • chain complexes P(m, n) of "*m*-to-*n* operations" for each $m, n \in \mathbb{N}$; • actions of $\mathbb{S}_m^{\text{op}} \times \mathbb{S}_n$; • binary operations for connected graphs with two vertices and no directed cycles; • associativity laws.

E.g.: *V* a chain complex. $\operatorname{End}(V)(m, n) = \operatorname{hom}(V^{\otimes m}, V^{\otimes n}) R^{\perp}[-2]$. There is always a fibration $\mathbb{D}P \to P^{i}$. *P* is defines a properad. An *action* of *P* on *V* (equivalently, *V Koszul* if it is acyclic. is a *P*-algebra) is a homomorphism $P \to \operatorname{End}(V)$.

E.g.: Let $\text{Chains}_{\bullet}(\mathbb{R}^d) = \Omega^{d-\bullet}_{\text{compact}}(\mathbb{R}^d)$. Then $\text{QLoc}(\mathbb{R}^d)$ acts on $\text{Chains}_{\bullet}(\mathbb{R}^d)$) and $\Omega^{d-\bullet}(\mathbb{R}^d)$. Image consists of *quasilocal* operations.

Fact: Properads form a model category with fibrations = surjections and weak equivalences = quasiisomorphisms.

(*Fibrant* means "relatively easy to map into" and *cofibrant* means "relatively easy to map out of." "Model category" implies many things, including: every P has a *cofibrant* replacement h $P \xrightarrow{\sim} P$.)

Defn: The *space* of maps $P \rightarrow Q$ is the simplicial set whose *k*-simplices are maps $P \rightarrow Q \otimes \Omega_{PL}(\Delta^k)$, Sullivan's polynomial forms on the *k*-simplex.

Defn: A homotopy action of P on V is a homomorphism $h P \rightarrow V$. The space of such things doesn't depend on choice of h P.

Defn: *P* is *formal* if cofibrant replacements of *P* and $H_{\bullet}(P)$ are homotopy equivalent.

E.g.: $H_{\bullet}(QLoc(\mathbb{R}^d)(m, n)) = \mathbb{R}[d(1-m)]$. The nontrivial class is represented by *Thom forms*.

Algebras for $H_{\bullet}(QLoc(\mathbb{R}^d)) = invFrob_d$ are *d-shifted open* commutative involutive Frobenius algebras, i.e. algebra V has noncounital cocommutative comultiplication and V[-d] has nonunital commutative multiplication, satisfying a Frobenius axiom, and such that: *involutivity*: (mult) \circ (comult) = 0.

So formality is saying: $Chains_{\bullet}(\mathbb{R}^d)$ is an involutive open Frobenius algebra *up to coherent homotopy*, such that all operations only move chains by finite amounts.

Remark: H_{\bullet} (closed manifold) is a Frobenius algebra. For open manifolds, need interplay of H_{\bullet} and H^{\bullet} . Still should expect a chain-level homotopy-Frobenius structure.

2. Technical tools for working with properads

Defn: If *P* is a properad satisfying mild finite-dimensionality conditions, its *bar dual* $\mathbb{D}P$ is freely generated by $P^*[-1]$, with an extra differential defined on generators to be dual to the sum of all binary compositions in *P*.

Fact: Under mild conditions, $\mathbb{D}P$ is cofibrant and $\mathbb{D}\mathbb{D}P \rightarrow P$ is a cofibrant replacement.

Defn: A properad *P* is *quadratic* if it is presented with generators *T* and only quadratic relations $R \subseteq T^{\otimes 2}$. The *quadratic dual P*ⁱ is generated by $T^*[-1]$ with relations $R^{\perp}[-2]$. There is always a fibration $\mathbb{D}P \to P^i$. *P* is *Koszul* if it is acyclic.

Fact: invFrob_d is Koszul. Its quadratic dual is LB_d — Lie bialgebras with cobracket of degree -1 and bracket of degree d - 1. So $\mathbb{D}LB_d \rightarrow \text{invFrob}_d$ is a cofibrant replacement, much smaller than \mathbb{DD} invFrob_d.

Defn: Frob₀ controls regular (open) commutative Frobenius algebras, i.e. $\operatorname{Frob}_0(m, n) = \mathbb{R}$ if $mn \neq 0$.

Warning: $Frob_0$ is not known to be Koszul. (Its quadratic dual controls involutive Lie bialgebras. \mathbb{D} Frob₀ has a generator for each connected surface with incoming and outgoing boundary.)

Fact: Under mild conditions, \exists canonical homomorphism $\mathbb{D}\operatorname{Frob}_0 \to P \otimes \mathbb{D}P$ for each *P*.

Cor: Suppose $QLoc(\mathbb{R}^d)$ is formal, so have $hinvFrob_d \xrightarrow{\sim} QLoc(\mathbb{R}^d)$. Given $\mathbb{D}invFrob_d$ -algebra V, get $\mathbb{D}Frob_0$ action on Chains_•(\mathbb{R}^d) $\otimes V$, with quasilocality condition.

3. Relation to geometry

Recall: Grothendieck explained how to define purely in terms of commutative algebra words like "derivation" and "differential operator." These work in dg setting. I will only use affine spaces.

Defn: A *Pois_d* algebra is a commutative algebra A with a biderivation making A[1 - d] into a Lie algebra. A

semistrict homotopy Pois_d algebra has a system of k-fold multiderivations making A[1-d] into an L_∞ algebra. "Semistrict" = don't weaken Leibniz rule.

E.g.: Poisson = $Pois_1$.

Lemma: A s.h.Pois_d structure on completed symmetric algebra $\widehat{\text{Sym}}(V)$ is equiv to a \mathbb{D} invFrob_d = h LB_d structure on V. (Flat, and vanishing at $0 \in V^* = \operatorname{spec} \widehat{\text{Sym}}(V)$.)

Philosophy: spec Sym(V) is an *infinitesimal manifold*. V are the *linear functions* for a given coordinate system. Properads control differentio-geometric structures on infinitesimal manifolds.

Lemma: A \mathbb{D} Frob₀ structure on V is equivalent to an E_0 structure ∂ on $\widehat{\text{Sym}}(V)[[\hbar]]$ such that ∂ is an *n*th-order diffifferential operator mod \hbar^n .

Defn: Such an E_0 structure on $A[[\hbar]]$ makes A into a semistrict homotopy Beilinson–Drinfeld algebra.

Historical remark: s.h.BD structures are to BD structures as L_{∞} algebras are to dglas. BD structures appear in the derived geometry of oscillating integrals, as discovered by Batalin–Vilkovisky. But Getzler defined "BV algebra" in mathematics to mean a different thing (same if you only have $\mathbb{Z}/2$ gradings) related to E_2 and Deligne conjecture. B–D were first to use the BD operad as such, and Costello–Gwilliam suggest naming it after them.

Exercise: Principal symbol of mod \hbar^n part of ∂ is the *n*th term in a Pois₀ structure on *A*. This corresponds to inclusion \mathbb{D} invFrob₀ $\hookrightarrow \mathbb{D}$ Frob₀, dual to quotient map by ideal imposing involutivity.

4. Relation to field theory

Suppose QLoc is formal, and choose V any hLB_d algebra. Then $\widehat{\text{Sym}}(\text{Chains}_{\bullet}(\mathbb{R}^d) \otimes V)[[\hbar]]$ is E_0 , with quasilocality condition. It is "the observables for a field theory":

Chains_•(\mathbb{R}^d) $\simeq \mathbb{R}$, of course, with \leftarrow map depending on choice of bump function. Thus $\widehat{\text{Sym}}(\text{Chains}_{\bullet}(\mathbb{R}^d) \otimes V) \simeq \widehat{\text{Sym}}(V)$. The *homological perturbation lemma* says that homotopy equivalences deform when you perturb the differential. (For oscillating integrals, HPL \Rightarrow Feynman diagrams.) So there is deformed differential on $\widehat{\text{Sym}}(V)[\hbar]$ making it homotopic to $\widehat{\text{Sym}}(\text{Chains}_{\bullet}(\mathbb{R}^d) \otimes V)[\hbar]$. The *insertion* map (still) depends on a choice of bump function. The other direction is *expectation value*.

Choose bump functions near $\vec{z_1}, \ldots, \vec{z_n} \in \mathbb{R}^d$. Insert $f_1, \ldots, f_n \in \widehat{\text{Sym}}(V)$ at those "points." Multiply the outputs in $\widehat{\text{Sym}}(\text{Chains}_{\bullet}(\mathbb{R}^d) \otimes V)[[\hbar]]$. Take expectation values. This is the *n*-point function.

Theorem (modulo details — **I've checked everything when** d = 1**):** The *n*-point function depends, of course, on (the bumps near) $\vec{z_1}, \ldots, \vec{z_n}$. But if all bumps have pairwise disjoint closed support, then "large volume limit" $(z_i \mapsto rz_i, \text{ take } r \to \infty)$ of *n*-point function converges in power-series topology. It is an *n*-ary multiplication, defining an E_d structure on $Sym(V)[[\hbar]]$.

Cor (mod details): QLoc formality $\Rightarrow E_d$ formality.

Proof: When $d \ge 2$, formality of E_d is equiv to having a universal quantization $\text{Pois}_d \rightsquigarrow E_d$. Any Pois_d algebra, in characteristic 0, has a resolution by a polynomial algebra. Universal quantization of infinitesimal Pois_d manifolds takes polynomials to polynomials.

How to prove the converse: Let V be the universal $h LB_d$ algebra (i.e. the generating object of the sym mon cat defined by $h LB_d$). Universal E_d quantization gives a factorization algebra on \mathbb{R}^d that assigns something homotopic to $\widehat{\text{Sym}}(V)[[\hbar]]$ to any contractible open. In principal, we should be able to choose it to assign precisely $\widehat{\text{Sym}}(\text{Chains}_{\bullet}(-) \otimes V)[[\hbar]]$ to any open. Unpacking the differential in terms of Feynman diagrams gives some universal operations on $\text{Chains}_{\bullet}(-)$. These should give the formality of QLoc.

5. The Poisson AKSZ construction

Alexandrov, Kontsevich, Schwartz, and Zaboronsky, while studying Chern–Simons theory in the Batalin–Vilkovisky framework, realized that if M is an oriented closed d'dimensional manifold and X is a *symplectic* Pois_d manifold (meaning the bracket is an isomorphism from cotangent to tangent bundles), <u>Maps</u>(T[1]M, X) = the derived space of locally constant maps from M to X is a symplectic Pois_{d-d'} manifold.

Suppose $X = \text{spec } \widehat{\text{Sym}}(V)$. Then $\underline{\text{Maps}}(T[1]M, X) = \text{spec } \widehat{\text{Sym}}(\text{Chains}_{\bullet}(M) \otimes V)$.

A *dioperad* is like an operad or properad, but with multiplications only for directed trees. In *dioperads*, $LB_d^i = Frob_d$, and they are Koszul.

Theorem: If M is oriented of dimension d', there is a canonical (i.e. contractible space of) *dioperadic* h Frob_{d'} structures on Chains_•(M), satisfying quasilocality.

Cor: Any s.h.Pois_d structure on spec $\widehat{\text{Sym}}(V)$ gives s.h.Pois_{d-d'} structure to spec $\widehat{\text{Sym}}(\text{Chains}_{\bullet}(M) \otimes V)$.

Defn: This is the *Poisson AKSZ construction*. It gives the AKSZ construction in the symplectic case. Extending to properads is *path integral quantization*.