Schrödinger	textbook Heisenberg	improved Heisenberg	Schrödinger \rightarrow Heisenburg functor "End"
"Hilbert" space V	assoc algebra A	assoc algebra A	A = End(V) (e.g. bounded operators)
$u_t: V \to V, t \in \mathbb{R}_{>0}$	autos $f_t : A \xrightarrow{\sim} A$	pointed bimodules	$_AA_A$ with left action twisted by $a \mapsto u_t a u_1^{-1}$
s.t. $u_{t_1+t_2} = u_{t_1}u_{t_2}$	s.t. $f_{t_1+t_2} = f_{t_1}f_{t_2}$	s.t. group law	\cong usual $_AA_A$ but pointed by u_t .
distinguished $v_i \in V$,	???	distinguished	$_{A}V$ pointed by v_{i} ,
$w_j \in V^*$, $a_k : V o V$		pointed (bi)modules	$(V^*)_A$ pointed by w_j , $_AA_A$ pointed by a_k

I. Motivations and definitions I.1. Schrödinger v. Heisenberg quantum mechanics

I.2. Non-affine quantum spaces

Defn: $VECT_0 = \mathbb{K}$. $VECT_1 = VECT_{\mathbb{K}}$ or $DGVECT_{\mathbb{K}}$. VECT₂ = bicategory of \mathbb{K} -linear cocomplete categories & K-linear cocontinuous functors (strict or $(\infty, 1)$).

Rmk: {cocomplete categories} has set-theoretic difficulties. Empirically, all examples \in subbicat $PRES_{\mathbb{K}}$ of locally presentable cats. Thm (Bird, Kelly, ...): $PRES_{\mathbb{K}}$ is closed under most categorical constructions.

Defn: Let *X* be a "space" (scheme or manifold or ...). $\mathcal{O}_k(X) = \text{sym mon } k \text{-cat of functions } X \to VECT_k.$ **E.g.:** $\mathcal{O}_0(X) = \mathcal{O}(X)$. $\mathcal{O}_1(X) = \mathsf{QCOH}(X)$.

Rmk: $\mathcal{O}_{k-1}(X) = \text{End}_{\mathcal{O}_k(X)}(\text{unit object}).$

Defn: X is *k*-affine if $X \to \text{Spec}(\mathcal{O}_k(X))$ is an equiv. **Rmk:** "Spec(C)" is a stack in fpqc topology.

Gelfand-Naimark theorem: Most spaces from functional analysis and point-set topology are 0-affine.

But: Most spaces from alg geo are not 0-affine.

Tannakian philosophy: Most spaces from algebraic geometry are 1-affine.

E.g.: 1-affine spaces \supseteq qcqs schemes (Brandenburg-Chirvasitu), affine ind-schemes (Brandenburg-Chirvasitu-JF), Nötherian algebraic stacks with affine stabilizers (Hall–Rydh). **Non-e.g.:** Algebraic stacks with non-affine stabilizers are not 1-affine (Hall-Rydh).

Defn: A *k*-quantum space X is something with $\mathcal{O}_0(X)$ a k-algebra (= E_k -alg). Spec(a k-alg) is 0-affine.

Rmk: If A is k-alg, MOD_A is (k-1)-monoidal category. **Defn:** Spec(a (k-1)-mon cat) is 1-affine k-quantum.

Bicat of k-affine k-quantum spaces $ALG_0(VECT_k)$: **Objects:** Pairs $X \in VECT_k$, $x \in X$.

1-morphisms: *Lax homs* in sense of JF–Scheimbauer:

$$\mathbb{1} \xrightarrow[y]{f} \bigvee_{Y} \stackrel{X}{\downarrow} F \text{, i.e. } F : X \to Y, f : y \to F(x).$$

Etc.

 $ALG_0(VECT_2)$ versus $ALG_1(VECT_1)$: Latter has objects = assoc algs, 1-morphisms = pointed bims, 2-morphisms

$$A \mapsto (MOD_A, A_A).$$

$$({}_AM_B, m) \mapsto ((-) \otimes_A M, m : B_B \to M_B).$$

MOD ∘ End :

$$V \mapsto (\mathsf{MOD}_{\mathsf{End}(V)}, \mathsf{End}(V)_{\mathsf{End}(V)}) \cong (\mathsf{VECT}_1, V).$$

(f: V \rightarrow W) \mapsto MOD(_{\mathsf{End}(V)}, \mathsf{hom}(V, W)_{\mathsf{End}(W)}, f)
$$\cong (\mathsf{id}_{\mathsf{VECT}_1}, f: V \to W).$$

Pre-thm (JF–Scheimbauer): For any sym mon (∞, k) category \mathcal{V} (with mild good properties) there is a sym mon (∞, n) -category ALG_{n-k} (\mathcal{V}) whose $0, \ldots, n-k$ dimensions are as in Calaque-Scheimbauer's construction, and whose $n - k, \ldots, n$ dimensions are as in ALG₀(\mathcal{V}).

I.3. Heisenberg-picture QFT

Choose an *n*-category "BORD $_{d-n,\dots,d}^{G}$ " of "bordisms in dims d - n through d with geometry G." E.g. G = Riemannian metric. (Equip bordisms with germs of *d*-dim collars; those collars are what have *G*-geometry.)

Defn: A Schrödinger picture QFT for $BORD_{d-n,...,d}^{G}$ is a sym mon functor $BORD_{d-n,...,d}^G \rightarrow VECT_n$.

A k-affine Heisenberg picture QFT for Defn: $\operatorname{BORD}_{d-n,\ldots,d}^G$ is a sym mon functor $\operatorname{BORD}_{d-n,\ldots,d}^G \to$ $ALG_{n-k}(VECT_k).$

Heisenberg = twisted (aka relative): When k = n, functors $BORD_{d-n,...,d}^{G} \rightarrow ALG_0(VECT_n)$ are oplax relative QFTs, i.e. sym mon oplax natural trans with domain the constant functor 1 : BORD^{*G*}_{*d*-*n*,...,*d* \rightarrow VECT_{*n*}, in the sense} of JF-Scheimbauer.

Rmk: Since I like strict things, henceforth I mostly assume k = 2, VECT₂ = PRES_K, and $n \leq 3$. I can build 4-cat $ALG_2(PRES_{\mathbb{K}})$ without appleaing to above pre-thm.

II. Examples and non-examples II.1. General TQFT comments

Special case of geometry is G = fr = "framing." Recall *Cobordism Hypothesis* (Lurie): {qfts BORD_{0,...,d}^{\text{fr}} \rightarrow C} \cong {*d*-dualizable objects in *C*}. Such QFTs are called (*framed*) topological, aka (*framed*) *TQFTs*. I will also use G = or = orientation, giving oriented TQFTs.

Example (Calaque–Scheimbauer): Every object of $ALG_d(\mathcal{V})$ is *d*-dualizable, so get lots of 0-affine Heisenberg-picture TQFTs.

Non-example (JF–Scheimbauer): If \mathcal{V} is an (∞, k) -category, the groupoid of *d*-dualizable objects in $ALG_{d-k}(\mathcal{V})$ is contractible — just {1}. So Heisenberg-picture TQFTs do not extend one dimension higher to some kind of Schrödinger-picture TQFTs.

II.2. A non-topological example & a relation to another approach to "Heisenberg picture QFT"

Defn: $\text{EMB}_d^G = (\infty, 1)$ -category of *d*-dim manifolds with *G*-geometry, with morphisms = embeddings. A *factorization algebra* is a sym mon functor $F : \text{EMB}_d^G \rightarrow \text{VECT}$ which is local for the Weiss topology.

Example (Dwyer–Stolz–Teichner, as seen through my glasses): Given factorization algebra $F : EMB_d^G \rightarrow VECT$, get 1-affine Heisenberg-picture QFT $BORD_{d-1,d}^G \rightarrow ALG_0(PRES_{\mathbb{K}})$. When F is locally constant (i.e. topological), this QFT is affine, and reproduces (MOD of) Calaque–Scheimbauer's TQFT.

Rmk: My understanding is their construction is extended & derived. I haven't grokked those parts yet.

II.3. 1-dimensional TQFTs

Exercise: If $(C, C) \in ALG_0(VECT_2)$ is 1-dualizable, then *C* is compact projective.

Corollary: Let X be a scheme. $(QCOH(X), \mathcal{O}_X) \in ALG_0(VECT_2)$ is 1-dualizable iff X is (0-)affine.

The 1-dim TQFT defined by $(QCOH(X), \mathcal{O}_X)$ is "classical 1-dim topological sigma model with target X."

Can non-0-affine QCOH(X)s still be "twists"? No:

Non-example (Brandenburg–Chirvasitu–JF): Let X be a scheme. If X contains a closed projective subscheme, then QCOH(X) is not 1-dualizable in $PRES_{\mathbb{K}}$.

(Non-)example (Brandenburg–Chirvasitu–JF): Let C be a coassociative coalgebra. $COMOD^C$ is 1-dualizable in $PRES_K$ iff it has enough projectives.

If $C = \mathcal{O}(G)$ for G an affine algebraic group, corresponding TQFT is "classical 1-dim topological gauge theory". COMOD^{$\mathcal{O}(G)$} = REP(G) has enough projectives

when reductive in char 0, but not when solvable, nor when semisimple in char p.

Example (Brandenburg–Chirvasitu–JF): If X is affine and G is (virtually) linearly reductive, then QCOH([X/G])is 1-dualizable in $PRES_{\mathbb{K}}$. The TQFT is "topological gauge theory coupled to matter."

Example (Brandenburg–Chirvasitu–JF): If $C \in PRES_{\mathbb{K}}$ has enough compact projectives, then it is 1-dualizable.

Conj (Brandenburg–Chirvasitu–JF): This is iff. **Sub-conj:** QCOH(X) is 1-dualizable iff X is affine.

Example (Ben-Zvi–Francis–Nadler): In derived world, only need enough compacts. Then all of these non-examples become examples.

II.4. 3-dimensional TQFTs

Example (Walker, as seen through my glasses):

• $C \in ALG_1(PRES_{\mathbb{K}})$ is 2-dualizable (i.e. defines 2-dim framed TQFT) if unit object $\mathbb{1}_{C} \in C$ is compact projective and C is generated by its dualizable objects.

• $C \in ALG_1(PRES_{\mathbb{K}})$ is moreover SO(2)-invariant (i.e. defines 2-dim oriented TQFT) if it is moreover equipped with a "pivotal" structure.

• $\mathcal{C} \in ALG_2(PRES_{\mathbb{K}})$ is 3-dualizable if $\mathbb{1}_{\mathcal{C}} \in \mathcal{C}$ is compact projective and \mathcal{C} is generated by its dualizable objects.

• $C \in ALG_2(PRES_{\mathbb{K}})$ is moreover SO(3)-invariant if it is moreover equipped with a "ribbon" structure.

I believe, but cannot yet prove, that these are sharp.

In particular: $\mathbb{K} = \mathbb{Z}[q, q^{-1}]$. $\mathcal{C} = \mathsf{TL} = \text{cocompletion}$ of Temperley–Lieb category = rep thy of Temperley–Lieb algebra. Corresponding tqft $M \mapsto \int_M \mathsf{TL}$ packages together all objects of Kauffman-bracket skein theory (skein algebras, relative skein modules, DAHA, ...).

Rmk: One power of $PRES_{\mathbb{K}}$ is that all constructions are well-behaved for "tensoring"-type operations. In particular, for any commutative ring hom $\mathbb{Z}[q, q^{-1}] \to R$, there is a category $TL \otimes_{\mathbb{Z}[q,q^{-1}]} R \in ALG_2(PRES_R)$, and $(\int_M TL) \otimes_{\mathbb{Z}[q,q^{-1}]} R \cong \int_M (TL \otimes_{\mathbb{Z}[q,q^{-1}]} R)$.

E.g.: $\mathbb{Z}[q, q^{-1}] \to \mathbb{C}$ via $q \mapsto -1$. Then $\mathsf{TL} \otimes_{\mathbb{Z}[q, q^{-1}]} \mathbb{C} = \mathsf{REP}(\mathsf{SL}(2))$. This "classical limit" is $M \mapsto \mathsf{QCOH}(\mathsf{stack} \text{ of } \mathsf{SL}(2)\text{-local systems on } M)$.

For general q, the TQFT is "quantum topological SL(2) gauge theory" aka SL(2) Chern–Simons theory.

Optimism: This might help answer various "semiclassics" questions from quantum topology, e.g. "AJ conjecture" relating colored Jones polynomial to character variety.

Using this technology, I am close to proving that the colored Jones polynomial distinguishes the unknot. Check back in a couple months.