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See arXiv:1502.06526, joint w/ C. Scheimbauer.

1. Functorial qfts: Schrödinger v. Heisenberg

Spacetime categories: QFTs associate algebraic data

(“partition functions”, “OPEs”, . . . ) to geometric data

(“spacetimes” equipped with some geometric structure).

This should be local when spacetimes are cut and pasted.

How to organize “locality”? One way is to build an

(∞, n)-category SPACETIMES whose k-dim morphisms

are k-manifolds surrounded by germs of n-dimensional

manifolds equipped with desired geometric structure.

Henceforth: fix choice of SPACETIMES.

Schrödinger-picture qft: The Schrödinger picture of

quantum mechanics uses systems described by Hilbert

spaces and linear maps between them. Atiyah (et al.):

a Schrödinger picture n-dimensional qft is a symmetric

monoidal (∞, n)-functor Z : SPACETIMES → VECTn,

where VECTn = {linear (∞, n − 1)-categories} is an

(∞, n)-category whose (n − 1)-morphisms are vector

spaces (maybe topological, chain complexes, etc.).

Problem: Hilbert spaces aren’t physical. “Space of

states” is PH, not H ∈ VECT. But do want ⊗,⊕.

Solution: Pointed category (H,VECT) has

Aut((H,VECT)) ∼= PGL(H) = Aut(PH).

Remark: Often, (H,VECT) ' (A,MODA) in bicategory

of pointed categories, i.e. is affine.

Heisenberg-picture qft: Should assign pointed cate-

gories to spaces. What about spacetimes, etc.?

Heisenberg = relative: A pointed category (C, C) is

a morphism C : 1 → C, where 1 is the monoidal unit

in the bicategory of categories. So Heisenberg-picture

qft could be a “morphism” Z : 1 ⇒ Z where 1 :

SPACETIMES → VECTn+1 is constant functor and Z :

SPACETIMES→ VECTn+1 is a “categorified Schrödinger

picture qft,” called the twist.

Guess: “Morphism” = “sym⊗ natural transformation.”

Exercise: For topological 1-bordisms cat BORD1, all sym

⊗ “strong” nat trans between functors BORD1 → C are

isomorphisms, for any sym ⊗ bicategory C.

Defn: An (op)lax transformation between functors of

bicategories is like a nat trans, but “naturality” is just a

morphism, not nec. invertible. In a strong transforma-

tion, naturality is imposed by isomorphisms.

2. What is an (∞, n)-category?

∃ many equivalent models of “(∞, n)-category.” I will

describe “complete n-fold Segal space” model.

Warm-up: A category is a simplicial set C• : ∆op →
SETS such that (“Segal condition”) ∀k ≥ 1, the map

Ck → C1 ×C0 C1 ×C0 · · · ×C0 C1︸ ︷︷ ︸
k times

is an iso. (Use {(i − 1, i) : ∆1 → ∆k}ki=1.)

A functor is a map of simplicial sets. BUT: this gets

WRONG notion of “equivalence” (no isos of functors).

Defn: An (∞, 1)-category is a simplicial topological space

C• : ∆op → SPACES such that ∀k ≥ 1, the map

Ck → C1 ×hC0 C1 ×
h
C0 · · · ×

h
C0 C1︸ ︷︷ ︸

k times

is a homotopy equivalence (×hC0 is homotopy fibered

product), AND MOREOVER (“completeness”) every

(family of) invertible-up-to-homotopy 1-morphism(s) is

homotopic to an (family of) identity 1-morphism(s).

A strict functor is a map of simplicial spaces. Note:

hom(B•, C•) is automatically a space. A functor is an

equivalence if it is levelwise so. Localize at equivalences.

This gets the RIGHT notion.

Remark: Model category theory makes this all clean.

Rather than localizing, work just with (∞, 1)-categories

that as simplicial spaces are cofibrant for projective model

structure. Or work just with fibrants for injective model.

Defn: An (∞, n)-category is an n-fold simplicial space

C~• : (∆×n)op → SPACES which is (∞, 1)-cat in each

direction (i.e. an (∞, 1)-cat internal to . . . internal to

(∞, 1)-cats), AND MOREOVER ∀i ≤ n, ∀~k ∈ Ni ,
C~k,0,•···• ∼= C~k,0,0...0 (i.e. at every level, categories of ob-

jects are actually spaces). So C is built from the spaces

C(i) = C1,...,1︸︷︷︸
i 1s

,0,...,0 = {i-morphisms in C}.

Strict functors are maps of n-fold simplicial spaces. Equiv-

alences are levelwise. Localize at those. Or use model

category theory.

Defn: A symmetric monoidal (∞, n)-category is C⊗~• (•) :

(∆×n × Γ)op → SPACES (Segal’s Γ is opposite to {finite

pointed sets}), which is (∞, n)- in the ∆×n direction, and

∀k , C⊗~• (k)→ C⊗~• (1)×k is a homotopy equivalence.

Strict functors, equivalences, localize, model categories.
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3. Walking morphisms and the main definition

For (∞, n)-categories B, C, let maps(B, C) = derived

space of functors = mapping space in the homotopy

category = hom(cofibrant replacement of B, fibrant re-

placement of C).

{(∞, n)-categories} is Cartesian closed: ∀B, C, ∃ an

(∞, n)-category maps(B, C) s.t.

maps(−,maps(B, C)) ' maps((−)× B, C).

Its space of objects maps(B, C)(0) is just maps(B, C).

Its space of 1-morphisms maps(B, C)(1) is the space of

strong natural transformations.

Defn: The walking 0-morphism is Θ(0) = { }. The

walking 1-morphism is Θ(1) = { }. The walking 2-

morphism is Θ(2) =
{ }

. Etc. These satisfy:

C(i) ' maps(Θ(i), C).

So maps(B, C)(1) ' maps(Θ(1),maps(B, C))

' maps(Θ(1)×B, C) ' maps(B,maps(Θ(1), C)).

I.e. a strong transformation η assigns:

B ∈ B(0) 7→ η(B) ∈ maps(Θ(1), C)(0) ' C(1)
b ∈ B(1) 7→ η(b) ∈ maps(Θ(1), C)(1)

' maps(Θ(1) ×Θ(1), C)

This gives strong transformations because

Θ(1) ×Θ(1) = ∼ .

Strategy: Replace maps(Θ(1), C) by an (∞, n)-category

with the same objects (=1-morphisms in C), but with 1-

morphisms = diagrams of shape in C.

This shape is not symmetric. We want it to be a 1-

morphism between arrows in C, so that a “transfor-

mation” assigns an arrow to each object and one of

these squares to each morphism. So let’s decide: in

“C→,” the objects are “horizontal” arrows, and a 1-

morphism is a box reading down, with source and target

(of the 1-morphism) the “vertical” source and target

sv , tv . In “C↓,” the objects are “vertical” arrows; the

source and target of a box-as-1-morphism are the “hor-

izontal” source and target sh, th.

Note that then there are two maps sv , tv : C↓ ⇒ C that

take any vertical arrow or any diagram just to its top or

bottom parts. Similarly sh, th : C→ ⇒ C.

Defn: Suppose we have defined such C→ and C↓. A lax

transformation η : F ⇒ G between F,G : B ⇒ C is a

functor η : B → C↓ with sv ◦ η = F and tv ◦ η = G. An

oplax transformation is η : B → C→ (c.f. §6).

In fact, C→ and C↓ are the horizontal and vertical 1-

morphism categories of a double (∞, n)-category C2, i.e.

C→~• = C2
(1);~• and C↓~• = C2

~•;(1). Basic data of an (∞, n)-

category C are spaces C(i) of i-morphisms for i ≤ n.

Basic data of C2 are spaces C2
(i);(j) for i , j ≤ n.

Strategy: We will define C2
(i);(j) to be the space of di-

agrams in C of shape Θ(i);(j), generalizing Θ(k);(0) =

Θ(0);(k) = Θ(k) and Θ(1);(1) = (c.f. §5).

Thm (JF–S): ∃ unique sequence of diagrams Θ(i);(j),

the walking (op)lax i-by-j morphism, with combinatorics

like Θ(i) ×Θ(j) but no invertible cells, s.t.:

• There are inclusions sh, th : Θ(i−1);(j) ⇒ Θ(i);(j) and

sv , tv : Θ(i);(j−1) ⇒ Θ(i);(j) called “horizontal source and

target” and “vertical source and target”.

• The source of the unique (i + j)-dimensional cell

θi ;j is sv (θi ;j−1) ◦ sh(θi−1;j), if i is even, or tv (θi ;j−1) ◦
sh(θi−1;j), if i is odd. (Exactly one of these compositions

makes sense.) The target is either th(θi−1;j) ◦ tv (θi ;j−1)

or th(θi−1;j) ◦ sv (θi ;j−1).

Thm (JF–S): The spaces C2
(i);(j) = maps(Θ(i);(j), C) do

in fact package into a double (∞, n)-category.

The nontrivial part is to prove completeness.

4. Twisted field theory

Thm (JF–S): If C is symmetric monoidal, so is C2.

Defn: Choose C a sym ⊗ (∞, n+ 1)-category, e.g. C =

VECTn+1. Choose sym ⊗ (∞, n)-category SPACETIMES

controlling n-dim field theory.

Given Z : SPACETIMES→ C, a lax Z-twisted field theory

is a sym monoidal functor Z : SPACETIMES → C↓ with

sv ◦ Z = 1 and tv ◦ Z = Z. For oplax, use C→.

Thm (JF–S): Lax 1-twisted field theories are canonically

equivalent to “Schrödinger picture” field theories valued

in ΩC = sym ⊗ (∞, n)-category of endomorphisms of

1 ∈ C. (If C = VECTn+1, then ΩC = VECTn.)

Not true for “lax” ; “oplax” or “strong.”

Remark: Oplax (but not lax) Z-twisted field theories are

“valued in Z” (c.f. §6). Your choice: is “valued in Z” or

“trivially-twisted = untwisted” more important?



Twisted field theories and higher-categorical (op)lax transfors, Theo Johnson-Freyd, 3 March 2015. p 3/4.

5. Examples of walking morphisms

Θ(1);(2) = shθ0;2

sv θ1;1

thθ0;2θ1;2

tv θ1;1

=

sv

sh

tv

θ1;2

th . Θ(2);(1) =
shθ1;1

tv θ2;0

θ2;1

sv θ2;0

thθ1;1

= sh

tv

sv

θ2;1 th .

Θ(1);(3) has the following four faces:

shsv

shtv

W sh ,

thsv

thtv

W th , sv sh

sv sv

sv th
sv

sv tv

, tv sh

tv sv

tv th
tv

tv tv

These are glued together along tv tv = sv tv , tv sv = sv sv , sv sh = shsv , tv sh = shtv , sv th = thsv , and tv th = thtv .

There is a 4-morphism θ1;3 : tv ◦ sh th ◦ sv .

Θ(2);(2) has the following four faces:

shsh

shsv

shth
sh

shtv

, thsh

thsv

thth
th

thtv

,

sv sh

sv tv

sv

sv sv

sv th

,

tv sh

tv tv

tv

tv sv

tv th

These are glued along shsh = thsh, shth = thth, sv sv = tv sv , sv tv = tv tv , shsv = sv sh, shtv = tv sh, thsv = sv th,

and thtv = tv th. Completing Θ(2);(2) is a 4-morphism θ2;2 : sv ◦ sh th ◦ tv filling in the 4-ball with boundary

this glued-up 3-sphere:

svsh
θ2;2

tv

th

In spite of the distortions, sv ◦ sh and th ◦ tv are parallel 3-morphisms — both are of shape

V =




.
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6. Summary: lax versus oplax transformations; lax versus oplax twisted field theory

Lax and oplax transformations η : F ⇒ G between functors F,G : B ⇒ C make the following assignments:

lax oplax

object B ∈ B η(B) : F (B)→ G(B) η(B) : F (B)→ G(B)

1-morphism {B1
b→ B2} ∈ B(1)

F (B1) F (b) F (B2)

η(B1)

G(B1) G(b) G(B2)

η(B2)
η(b)

F (B1) η(B1) G(B1)

F (b)

F (B2) η(B2) G(B2)

G(b)
η(b)

2-morphism B1 B2

b1

b2

β

F (B1) F (B2)

G(B1) G(B2)

η(B1) η(B2)

η(b1)

G(β)

η(β)

F (β)

η(b2)

F (β)

η(b1)

G(β)

F (B1) η(B1) G(B1)

F (B2) η(B2) G(B2)

η(β)

η(b2)

Therefore a lax/oplax twisted qft Z : 1→ Z assigns to closed manifolds:

lax oplax

object b ∈ SPACETIMES(0) Z(b) : 1→ Z(b) Z(b) : 1→ Z(b)

1-morphism 1
b→ 1 ∈ SPACETIMES(1)

1 1 1

1

1 Z(b) 1

1

Z(b)

Z(b) : Z(b)⇒ 1

1 1 1

1

1 1 1

Z(b)
Z(b)

Z(b) : 1⇒ Z(b)

2-morphism 1 1

1

1

b ∈ SPACETIMES(2)
1

Z(b)

Z(b)

1

1

Z(b) : 1V Z(b)

1

1

Z(b)Z(b)

1

Z(b) : 1V Z(b)


