See arXiv:1502.06526, joint w/ C. Scheimbauer.

1. Functorial qfts: Schrödinger v. Heisenberg

Spacetime categories: QFTs associate algebraic data ("partition functions", "OPEs", ...) to geometric data ("spacetimes" equipped with some geometric structure). This should be *local* when spacetimes are cut and pasted.

How to organize "locality"? One way is to build an (∞, n) -category SPACETIMES whose *k*-dim morphisms are *k*-manifolds surrounded by germs of *n*-dimensional manifolds equipped with desired geometric structure.

Henceforth: fix choice of SPACETIMES.

Schrödinger-picture qft: The *Schrödinger picture* of quantum mechanics uses systems described by Hilbert spaces and linear maps between them. Atiyah (et al.): a *Schrödinger picture n-dimensional qft* is a symmetric monoidal (∞, n) -functor Z : SPACETIMES \rightarrow VECT_n, where VECT_n = {linear $(\infty, n - 1)$ -categories} is an (∞, n) -category whose (n - 1)-morphisms are vector spaces (maybe topological, chain complexes, etc.).

Problem: Hilbert spaces aren't physical. "Space of states" is $\mathbb{P}\mathcal{H}$, not $\mathcal{H} \in \mathsf{VECT}$. But do want \otimes, \oplus .

Solution: Pointed category (\mathcal{H} , VECT) has

 $\operatorname{Aut}((\mathcal{H}, \operatorname{VECT})) \cong \operatorname{PGL}(\mathcal{H}) = \operatorname{Aut}(\mathbb{P}\mathcal{H}).$

Remark: Often, $(\mathcal{H}, VECT) \simeq (A, MOD_A)$ in bicategory of pointed categories, i.e. is *affine*.

Heisenberg-picture qft: Should assign pointed categories to spaces. What about spacetimes, etc.?

Heisenberg = relative: A pointed category (C, C) is a morphism $C : \mathbb{1} \to C$, where $\mathbb{1}$ is the monoidal unit in the bicategory of categories. So *Heisenberg-picture qft* could be a "morphism" $Z : \mathbb{1} \Rightarrow Z$ where $\mathbb{1}$: SPACETIMES $\to \text{VECT}_{n+1}$ is constant functor and Z : SPACETIMES $\to \text{VECT}_{n+1}$ is a "categorified Schrödinger picture qft," called the *twist*.

Guess: "Morphism" = "sym \otimes natural transformation."

Exercise: For topological 1-bordisms cat BORD₁, all sym \otimes "strong" nat trans between functors BORD₁ $\rightarrow C$ are isomorphisms, for any sym \otimes bicategory C.

Defn: An *(op)lax transformation* between functors of bicategories is like a nat trans, but "naturality" is just a morphism, not nec. invertible. In a *strong* transformation, naturality is imposed by isomorphisms.

2. What is an (∞, n) -category?

 \exists many equivalent models of " (∞, n) -category." I will describe "complete *n*-fold Segal space" model.

Warm-up: A *category* is a simplicial set $C_{\bullet} : \Delta^{op} \rightarrow$ SETS such that ("Segal condition") $\forall k \ge 1$, the map

$$\mathcal{C}_k \to \underbrace{\mathcal{C}_1 \times_{\mathcal{C}_0} \mathcal{C}_1 \times_{\mathcal{C}_0} \cdots \times_{\mathcal{C}_0} \mathcal{C}_1}_{k \text{ times}}$$

is an iso. (Use $\{(i-1,i): \Delta^1 \rightarrow \Delta^k\}_{i=1}^k$.)

A *functor* is a map of simplicial sets. BUT: this gets WRONG notion of "equivalence" (no isos of functors).

Defn: An $(\infty, 1)$ -*category* is a simplicial topological space $C_{\bullet} : \Delta^{\text{op}} \to \text{SPACES}$ such that $\forall k \ge 1$, the map

$$\mathcal{C}_k \to \underbrace{\mathcal{C}_1 \times^h_{\mathcal{C}_0} \mathcal{C}_1 \times^h_{\mathcal{C}_0} \cdots \times^h_{\mathcal{C}_0} \mathcal{C}_1}_{k \text{ times}}$$

is a homotopy equivalence $(\times_{C_0}^h \text{ is homotopy fibered product})$, AND MOREOVER ("completeness") every (family of) invertible-up-to-homotopy 1-morphism(s) is homotopic to an (family of) identity 1-morphism(s).

A *strict functor* is a map of simplicial spaces. Note: hom($\mathcal{B}_{\bullet}, \mathcal{C}_{\bullet}$) is automatically a space. A functor is an *equivalence* if it is levelwise so. Localize at equivalences. This gets the RIGHT notion.

Remark: Model category theory makes this all clean. Rather than localizing, work just with $(\infty, 1)$ -categories that as simplicial spaces are cofibrant for projective model structure. Or work just with fibrants for injective model.

Defn: An (∞, n) -category is an *n*-fold simplicial space $C_{\vec{\bullet}} : (\Delta^{\times n})^{\text{op}} \to \text{SPACES}$ which is $(\infty, 1)$ -cat in each direction (i.e. an $(\infty, 1)$ -cat internal to ... internal to $(\infty, 1)$ -cats), AND MOREOVER $\forall i \leq n, \forall \vec{k} \in \mathbb{N}^i, C_{\vec{k},0,0\dots0} \in \mathcal{C}_{\vec{k},0,0\dots0}$ (i.e. at every level, categories of objects are actually spaces). So C is built from the spaces $C_{(i)} = C_{1,\dots,1,0,\dots,0} = \{i\text{-morphisms in } C\}.$

Strict functors are maps of *n*-fold simplicial spaces. *Equivalences* are levelwise. Localize at those. Or use model category theory.

Defn: A symmetric monoidal (∞, n) -category is $C^{\otimes}_{\bullet}(\bullet)$: $(\Delta^{\times n} \times \Gamma)^{\text{op}} \to \text{SPACES}$ (Segal's Γ is opposite to {finite pointed sets}), which is (∞, n) - in the $\Delta^{\times n}$ direction, and $\forall k, C^{\otimes}_{\bullet}(k) \to C^{\otimes}_{\bullet}(1)^{\times k}$ is a homotopy equivalence.

Strict functors, equivalences, localize, model categories.

3. Walking morphisms and the main definition

For (∞, n) -categories \mathcal{B}, \mathcal{C} , let maps $(\mathcal{B}, \mathcal{C}) = derived$ space of functors = mapping space in the homotopy category = hom(cofibrant replacement of \mathcal{B} , fibrant replacement of \mathcal{C}).

 $\{(\infty, n)\text{-categories}\}$ is *Cartesian closed*: $\forall \mathcal{B}, \mathcal{C}, \exists$ an $(\infty, n)\text{-category maps}(\mathcal{B}, \mathcal{C})$ s.t.

 $maps(-, maps(\mathcal{B}, \mathcal{C})) \simeq maps((-) \times \mathcal{B}, \mathcal{C}).$

Its space of objects $\underline{maps}(\mathcal{B}, \mathcal{C})_{(0)}$ is just $maps(\mathcal{B}, \mathcal{C})$. Its space of 1-morphisms $\underline{maps}(\mathcal{B}, \mathcal{C})_{(1)}$ is the space of *strong natural transformations*.

Defn: The walking 0-morphism is $\Theta^{(0)} = \{\bullet\}$. The walking 1-morphism is $\Theta^{(1)} = \{\bullet \rightarrow \bullet\}$. The walking 2-morphism is $\Theta^{(2)} = \{\bullet \frown \bullet\}$. Etc. These satisfy: $\mathcal{C}_{(i)} \simeq \operatorname{maps}(\Theta^{(i)}, \mathcal{C}).$

So $\underline{\operatorname{maps}}(\mathcal{B}, \mathcal{C})_{(1)} \simeq \operatorname{maps}(\Theta^{(1)}, \underline{\operatorname{maps}}(\mathcal{B}, \mathcal{C}))$ $\simeq \operatorname{maps}(\Theta^{(1)} \times \mathcal{B}, \mathcal{C}) \simeq \operatorname{maps}(\mathcal{B}, \operatorname{maps}(\Theta^{(1)}, \mathcal{C})).$

I.e. a strong transformation η assigns:

$$B \in \mathcal{B}_{(0)} \quad \mapsto \ \eta(B) \in \underline{\mathsf{maps}}(\Theta^{(1)}, \mathcal{C})_{(0)} \simeq \mathcal{C}_{(1)}$$
$$b \in \mathcal{B}_{(1)} \quad \mapsto \ \eta(b) \in \underline{\mathsf{maps}}(\Theta^{(1)}, \mathcal{C})_{(1)}$$
$$\simeq \mathsf{maps}(\Theta^{(1)} \times \Theta^{(1)}, \mathcal{C})$$

This gives strong transformations because

$$\Theta^{(1)} \times \Theta^{(1)} = \bigcup_{\bullet \longrightarrow \bullet}^{\bullet} \bigoplus_{\bullet}^{\bullet} .$$

Strategy: Replace $\underline{maps}(\Theta^{(1)}, C)$ by an (∞, n) -category with the same objects (=1-morphisms in C), but with 1-morphisms = diagrams of shape $\underbrace{\bullet}_{\bullet} \xrightarrow{\bullet}_{\bullet} \underbrace{\bullet}_{\bullet}$ in C.

This shape is not symmetric. We want it to be a 1morphism between arrows in C, so that a "transformation" assigns an arrow to each object and one of these squares to each morphism. So let's decide: in " C^{\rightarrow} ," the objects are "horizontal" arrows, and a 1morphism is a box reading down, with source and target (of the 1-morphism) the "vertical" source and target s_{v}, t_{v} . In " C^{\downarrow} ," the objects are "vertical" arrows; the source and target of a box-as-1-morphism are the "horizontal" source and target s_{h}, t_{h} .

Note that then there are two maps s_v , $t_v : \mathcal{C}^{\downarrow} \rightrightarrows \mathcal{C}$ that take any vertical arrow or any diagram just to its top or bottom parts. Similarly s_h , $t_h : \mathcal{C}^{\rightarrow} \rightrightarrows \mathcal{C}$.

Defn: Suppose we have defined such $\mathcal{C}^{\rightarrow}$ and \mathcal{C}^{\downarrow} . A *lax transformation* $\eta : F \Rightarrow G$ between $F, G : \mathcal{B} \Rightarrow \mathcal{C}$ is a functor $\eta : \mathcal{B} \rightarrow \mathcal{C}^{\downarrow}$ with $s_v \circ \eta = F$ and $t_v \circ \eta = G$. An *oplax transformation* is $\eta : \mathcal{B} \rightarrow \mathcal{C}^{\rightarrow}$ (c.f. §6).

In fact, C^{\rightarrow} and C^{\downarrow} are the horizontal and vertical 1morphism categories of a *double* (∞, n) -*category* C^{\Box} , i.e. $C^{\rightarrow}_{\vec{\bullet}} = C^{\Box}_{(1);\vec{\bullet}}$ and $C^{\downarrow}_{\vec{\bullet}} = C^{\Box}_{\vec{\bullet};(1)}$. Basic data of an (∞, n) category C are spaces $C_{(i)}$ of *i*-morphisms for $i \leq n$. Basic data of C^{\Box} are spaces $C^{\Box}_{(i);(i)}$ for $i, j \leq n$.

Strategy: We will define $C_{(i);(j)}^{\Box}$ to be the space of diagrams in C of shape $\Theta^{(i);(j)}$, generalizing $\Theta^{(k);(0)} = \Theta^{(0);(k)} = \Theta^{(k)}$ and $\Theta^{(1);(1)} = \bigcup_{k \to 0}^{+ \to 0} (\text{c.f. } \S5).$

Thm (JF–S): \exists unique sequence of diagrams $\Theta^{(i);(j)}$, the *walking (op)lax i-by-j morphism*, with combinatorics like $\Theta^{(i)} \times \Theta^{(j)}$ but no invertible cells, s.t.:

• There are inclusions s_h , $t_h : \Theta^{(i-1);(j)} \rightrightarrows \Theta^{(i);(j)}$ and s_v , $t_v : \Theta^{(i);(j-1)} \rightrightarrows \Theta^{(i);(j)}$ called "horizontal source and target" and "vertical source and target".

• The source of the unique (i + j)-dimensional cell $\theta_{i;j}$ is $s_v(\theta_{i;j-1}) \circ s_h(\theta_{i-1;j})$, if *i* is even, or $t_v(\theta_{i;j-1}) \circ s_h(\theta_{i-1;j})$, if *i* is odd. (Exactly one of these compositions makes sense.) The target is either $t_h(\theta_{i-1;j}) \circ t_v(\theta_{i;j-1})$ or $t_h(\theta_{i-1;j}) \circ s_v(\theta_{i;j-1})$.

Thm (JF–S): The spaces $C_{(i);(j)}^{\square} = \text{maps}(\Theta^{(i);(j)}, C)$ do in fact package into a double (∞, n) -category.

The nontrivial part is to prove completeness.

4. Twisted field theory

Thm (JF–S): If C is symmetric monoidal, so is C^{\Box} .

Defn: Choose C a sym \otimes (∞ , n + 1)-category, e.g. C =VECT_{n+1}. Choose sym \otimes (∞ , n)-category SPACETIMES controlling *n*-dim field theory.

Given \mathcal{Z} : SPACETIMES $\rightarrow \mathcal{C}$, a *lax* \mathcal{Z} -*twisted field theory* is a sym monoidal functor Z: SPACETIMES $\rightarrow \mathcal{C}^{\downarrow}$ with $s_v \circ Z = \mathbb{1}$ and $t_v \circ Z = \mathcal{Z}$. For *oplax*, use $\mathcal{C}^{\rightarrow}$.

Thm (JF–S): Lax 1-twisted field theories are canonically equivalent to "Schrödinger picture" field theories valued in ΩC = sym \otimes (∞ , n)-category of endomorphisms of $1 \in C$. (If C = VECT_{n+1}, then ΩC = VECT_n.)

Not true for "lax" \rightsquigarrow "oplax" or "strong."

Remark: Oplax (but not lax) Z-twisted field theories are "valued in Z" (c.f. §6). Your choice: is "valued in Z" or "trivially-twisted = untwisted" more important?

5. Examples of walking morphisms

 $\Theta^{(1);(3)}$ has the following four faces:

These are glued together along $t_v t_v = s_v t_v$, $t_v s_v = s_v s_v$, $s_v s_h = s_h s_v$, $t_v s_h = s_h t_v$, $s_v t_h = t_h s_v$, and $t_v t_h = t_h t_v$. There is a 4-morphism $\theta_{1;3}$: $t_v \circ s_h \Longrightarrow t_h \circ s_v$.

 $\Theta^{(2);(2)}$ has the following four faces:

These are glued along $s_h s_h = t_h s_h$, $s_h t_h = t_h t_h$, $s_v s_v = t_v s_v$, $s_v t_v = t_v t_v$, $s_h s_v = s_v s_h$, $s_h t_v = t_v s_h$, $t_h s_v = s_v t_h$, and $t_h t_v = t_v t_h$. Completing $\Theta^{(2);(2)}$ is a 4-morphism $\theta_{2;2} : s_v \circ s_h \Longrightarrow t_h \circ t_v$ filling in the 4-ball with boundary this glued-up 3-sphere:

In spite of the distortions, $s_v \circ s_h$ and $t_h \circ t_v$ are parallel 3-morphisms — both are of shape

6. Summary: lax versus oplax transformations; lax versus oplax twisted field theory

.

Lax and oplax transformations $\eta: F \Rightarrow G$ between functors $F, G: \mathcal{B} \rightrightarrows \mathcal{C}$ make the following assignments:

		lax	oplax	
object	$B\in \mathcal{B}$	$\eta(B):F(B) ightarrow G(B)$	$\eta(B):F(B) ightarrow G(B)$	
1-morphism	$\{B_1 \xrightarrow{b} B_2\} \in \mathcal{B}_{(1)}$	$F(B_1) \xrightarrow{F(b)} F(B_2)$ $\eta(B_1) \xrightarrow{\eta(b)} \eta(B_2)$ $G(B_1) \xrightarrow{G(b)} G(B_2)$	$F(B_1) \xrightarrow{\eta(B_1)} G(B_1)$ $F(b) \xrightarrow{\eta(b)} G(b)$ $F(B_2) \xrightarrow{\eta(B_2)} G(B_2)$	
2-morphism	$B_1 \bullet \overbrace{\beta \Downarrow \ b_2}^{b_1} \bullet B_2$	$F(B_1) \xrightarrow{F(\beta)} \eta(B_1)$ $\eta(B_1) \xrightarrow{\eta(\beta)} \eta(B_2)$ $\sigma(B_1) \xrightarrow{\varphi(\beta)} \sigma(B_2)$	$F(B_1) \qquad \eta(B_1) \qquad G(B_1)$ $(F(\beta)) \qquad \eta(b_1) \qquad (G(\beta)) \qquad ($	

Therefore a lax/oplax twisted qft $Z : \mathbb{1} \to \mathcal{Z}$ assigns to closed manifolds:

		lax	oplax
object	$b \in SPACETIMES_{(0)}$	$Z(b):\mathbb{1} ightarrow\mathcal{Z}(b)$	$Z(b): \mathbb{1} \to \mathcal{Z}(b)$
1-morphism	$\mathbb{1} \xrightarrow{b} \mathbb{1} \in SPACETIMES_{(1)}$	$1 \xrightarrow{1} Z(b) \xrightarrow{1} 1$ $1 \xrightarrow{Z(b)} \xrightarrow{1} 1$ $1 \xrightarrow{Z(b)} 1$	$ \begin{array}{c} 1 \\ \bullet \\ 1 \\ \downarrow \\ \downarrow$
		$Z(b): \mathcal{Z}(b) \Rightarrow \mathbb{1}$	$Z(b):\mathbb{1}\Rightarrow\mathcal{Z}(b)$
2-morphism	$1 \bullet \underbrace{\overset{1}{\overset{b} \downarrow}}_{1} \bullet 1 \in SPACETIMES_{(2)}$		
		$Z(b): \mathbb{1} \Rrightarrow \mathcal{Z}(b)$	$Z(b): \mathbb{1} \Rrightarrow \mathcal{Z}(b)$