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See arXiv:1502.06526, joint w/ C. Scheimbauer.

1. Functorial ¢fts: Schrodinger v. Heisenberg

Spacetime categories: QFTs associate algebraic data
(“partition functions”, “"OPEs", ...) to geometric data
(“spacetimes” equipped with some geometric structure).
This should be local when spacetimes are cut and pasted.

How to organize “locality”? One way is to build an
(00, n)-category SPACETIMES whose k-dim morphisms
are k-manifolds surrounded by germs of n-dimensional
manifolds equipped with desired geometric structure.

Henceforth: fix choice of SPACETIMES.

Schrédinger-picture qft: The Schrédinger picture of
quantum mechanics uses systems described by Hilbert
spaces and linear maps between them. Atiyah (et al.):
a Schrédinger picture n-dimensional gft is a symmetric
monoidal (oo, n)-functor Z : SPACETIMES — VECT,,
where VECT, = {linear (oo, n — 1)-categories} is an
(00, n)-category whose (n — 1)-morphisms are vector
spaces (maybe topological, chain complexes, etc.).

Problem: Hilbert spaces aren't physical. “Space of
states” is PH, not H € VECT. But do want ®, .

Solution: Pointed category (H, VECT) has
Aut((H, VECT)) = PGL(H) = Aut(PH).

Remark: Often, (H, VECT) =~ (A, MOD,) in bicategory
of pointed categories, i.e. is affine.

Heisenberg-picture qft: Should assign pointed cate-
gories to spaces. What about spacetimes, etc.?

Heisenberg = relative: A pointed category (C,C) is
a morphism C : 1 — C, where 1 is the monoidal unit
in the bicategory of categories. So Heisenberg-picture
gft could be a “morphism” Z : 1 = Z where 1 :
SPACETIMES — VECTj4+1 Is constant functor and Z :
SPACETIMES — VECT 41 is a “categorified Schrodinger
picture gft,” called the twist.

Guess: “Morphism” = “sym ® natural transformation.”

Exercise: For topological 1-bordisms cat BORD{, all sym
® “strong” nat trans between functors BORD; — C are
isomorphisms, for any sym ® bicategory C.

Defn: An (op)lax transformation between functors of
bicategories is like a nat trans, but “naturality” is just a
morphism, not nec. invertible. In a strong transforma-
tion, naturality is imposed by isomorphisms.

2. What is an (oo, n)-category?

3 many equivalent models of “(co, n)-category.” | will
describe “complete n-fold Segal space” model.

Warm-up: A category is a simplicial set Cq : A°? —
SETS such that ( "Segal condition™) Vk > 1, the map

Ck —>C1 X Cl X X Cl

k times
is an iso. (Use {(1—1,7) : Al — AR} .

A functor is a map of simplicial sets. BUT: this gets
WRONG notion of “equivalence” (no isos of functors).

Defn: An (oo, 1)-categoryis a simplicial topological space
Ce : A°P — SPACES such that Vk > 1, the map

h h h
Ck —>C]_ Xco Cl XCO Xco Cl

k times

is a homotopy equivalence (xgo is homotopy fibered
product), AND MOREOVER ("“completeness”) every
(family of) invertible-up-to-homotopy 1-morphism(s) is
homotopic to an (family of ) identity 1-morphism(s).

A strict functor is a map of simplicial spaces. Note:
hom(B,, Ce) is automatically a space. A functor is an
equivalence if it is levelwise so. Localize at equivalences.
This gets the RIGHT notion.

Remark: Model category theory makes this all clean.
Rather than localizing, work just with (oo, 1)-categories
that as simplicial spaces are cofibrant for projective model
structure. Or work just with fibrants for injective model.

Defn: An (oo, n)-category is an n-fold simplicial space
Cs : (AX")°P — SPACES which is (oo, 1)-cat in each
direction (i.e. an (oo, 1)-cat internal to ... internal to
(00, 1)-cats), AND MOREOVER Vi < n, Vk € N',
Cl?,o,.-... = C/?,o,o_,_o (i.e. at every level, categories of ob-
jects are actually spaces). So C is built from the spaces
Ciy =Cz1,...1,0,..0 = {i-morphisms in C}.
v

ils

Strict functors are maps of n-fold simplicial spaces. Equiv-
alences are levelwise. Localize at those. Or use model
category theory.

Defn: A symmetric monoidal (0o, n)-category is CS () :
(A*" x [")°P — SPACES (Segal’s I is opposite to {finite
pointed sets}), which is (oo, n)- in the A*" direction, and
Vk, C2 (k) — CZ(1)*k is a homotopy equivalence.

Strict functors, equivalences, localize, model categories.
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3. Walking morphisms and the main definition

For (oo, n)-categories B,C, let maps(B,C) = derived
space of functors = mapping space in the homotopy
category = hom(cofibrant replacement of B, fibrant re-
placement of C).

{(o0, n)-categories} is Cartesian closed: VB,C, 3 an
(00, n)-category maps(B,C) s.t.

maps(—, maps(B,C)) ~ maps((—) x B,C).
Its space of objects maps(B,C) ) is just maps(B,C).

Its space of 1-morphisms maps(B,C)(y) is the space of
strong natural transformations.

Defn: The walking 0-morphism is ©(©) = {e}. The
walking 1-morphism is ©1) = {e=e}. The walking 2-

e ic @) — L0, .
morphism is © | { \4;/ } Etc. These satisfy:
Ciy =~ maps(©), C).

So maps(B,C) (1) =~ maps(©1) maps(B, C))
~ maps(©W x B, C) ~ maps(B, maps(©V), C)).

l.e. a strong transformation 7 assigns:
B € By + n(B)e @(9(1),6)(0) ~
be By — n(b) € maps(®W,C)q)
~ maps(©) x ) ()

This gives strong transformations because
*o—e

(1) 1 _ |
@ X@ —l/l

oe——e

Strategy: Replace maps(©(), C) by an (oo, n)-category
with the same objects (=1-morphisms in C), but with 1-
e—>e

morphisms = diagrams of shape | | in C.

e—3e
This shape is not symmetric. We want it to be a 1-
morphism between arrows in C, so that a "“transfor-
mation” assigns an arrow to each object and one of
these squares to each morphism. So let's decide: in
“C—." the objects are “horizontal” arrows, and a 1-
morphism is a box reading down, with source and target
(of the 1-morphism) the “vertical” source and target
Sy, ty. In “C*" the objects are “vertical' arrows; the
source and target of a box-as-1-morphism are the “hor-
izontal” source and target sp, tp.

Note that then there are two maps s, t, : C* =% C that
take any vertical arrow or any diagram just to its top or
bottom parts. Similarly sp, t : C7 = C.

Defn: Suppose we have defined such C™ and C*. A lax
transformation 1 : F = G between F,G : B=C is a
functor n: B — C* with s,on=F and t, on = G. An
oplax transformationis n: B — C~ (c.f. §6).

In fact, C~ and C* are the horizontal and vertical 1-
morphism categories of a double (oo, n)-category CE, i.e.
C3" = Cye and Cy = Ce\(1y- Basic data of an (o0, n)-
category C are spaces C(;y of i-morphisms for i < n.
Basic data of CP are spaces CF/);U) for i,j < n.

Strategy: We will define C(D,.)_(j) to be the space of di-

agrams in C of shape ©(:0) generalizing ©*){(©) =
0k — (k) and OV =¢§¢ (c.f. §5).

Thm (JF-S): 3 unique sequence of diagrams ©():U),
the walking (op)lax i-by-j morphism, with combinatorics
like ©) x ©U) but no invertible cells, s.t.:

e There are inclusions s, t, : ©0~1:0) = ©(:U) and
sy, t,  ©0i0-1) = ©(:U) called “horizontal source and
target” and “vertical source and target”.

e The source of the unique (i + j)-dimensional cell
6i.j is s,(0:j—1) o sp(6i—1.), if i is even, or t,(6;.j—1) o
sp(0i—1), if i is odd. (Exactly one of these compositions
makes sense.) The target is either t,(6i—-1.j) o t,(6;;—1)
or th(9,-_1u-) o SV(Q,';J‘_l).

Thm (JF-S): The spaces CE/):(J) = maps(©):0), ) do
in fact package into a double (oo, n)-category.

The nontrivial part is to prove completeness.

4. Twisted field theory
Thm (JF-S): If C is symmetric monoidal, so is CH.

Defn: Choose C a sym ® (oo, n+ 1)-category, e.g. C =
VECTp4+1. Choose sym ® (oo, n)-category SPACETIMES
controlling n-dim field theory.

Given Z : SPACETIMES — C, a lax Z-twisted field theory
is a sym monoidal functor Z : SPACETIMES — C% with
s,oZ=1and t, 0o Z = Z. For oplax, use C.

Thm (JF-S): Lax 1-twisted field theories are canonically
equivalent to “Schrodinger picture” field theories valued
in 2C = sym ® (oo, n)-category of endomorphisms of
1eC. (If C=VECTp41, then QC = VECT,.)

Not true for “lax” ~ “oplax” or ‘“strong.”

Remark: Oplax (but not lax) Z-twisted field theories are
“valued in Z" (c.f. §6). Your choice: is “valued in Z" or
“trivially-twisted = untwisted” more important?
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5. Examples of walking morphisms

©W:i(3) has the following four faces:

[ ° e ————————————— e e ———— e
ShSv thSy SvSy tysy
S\ S\ s % / t %
lU'sh ' lU-th [} Sv sy th ’ ty t,th
) ° L R ———ad L —k ]

These are glued together along t,t, = s, t,, t,Sy = S,Sy, SySh = SpSy, tyShn = Spty, Suth = tpsy, and t, t, = tyt,.
There is a 4-morphism 61.3 : t, 05, =t 05,.

©2)(2) has the following four faces:

D

SvSy
S
v

oe——————>e ¢ —>0 [ ] [ O//////]l;:;\\ut
ShSh thsh =
s, 5
/ 2 /hth ' / h /ﬁfh ' g ' v
Shty thty vtn vip
¢ — e ¢ — e ° »H«S ty ﬂtvt\/ .

These are glued along spsp = tyhSh, Sptp = tpth, SySy = tysy, Syty, = tyty, SpSy = SySh, Spty = tySh, thSy = Sy th,
and tpt, = t,t;. Completing 02?2 js 3 4-morphism 6.5 : s, o sy =ty o t, filling in the 4-ball with boundary
this glued-up 3-sphere:

G
<.

In spite of the distortions, s, o s, and t, o t, are parallel 3-morphisms — both are of shape

/ LJ

ST %
gx% &
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6. Summary: lax versus oplax transformations; lax versus oplax twisted field theory

Lax and oplax transformations 1 : F = G between functors F, G : B = C make the following assignments:

‘ lax ‘ oplax
object BeB n(B) : F(B) — G(B) n(B) : F(B) — G(B)
F(B1) F(b) F(B2) F(B1) n(B1) G(B1)
o — o — e
b b
1-morphism {B; N B>} € By n(Bl)‘ n(b) ‘n(Bg) F(b)‘ nb) ‘G(b)
o — o —e
G(B1) G(b) G(B2) F(B2) n(B2) G(B2)

F(B1) '%ﬂ«\" F(B2) | F(B1) n(B1) G(B1)

by n(b1)
2-morphism  B; -//34;\- B>

2V A n(B1) n(B) n(B2)
Jew

6B Y 6

Therefore a lax/oplax twisted gft Z : 1 — Z assigns to closed manifolds:

‘ lax ‘ oplax
object b € SPACETIMES (g) Z(b):1— Z(b) Z(b):1— Z(b)

1 1 1 1 1 1

o— e e— e
. b Z(b) Z(b)
1-morphism 1 = 1 € SPACETIMES(q) 1 1 1 Z(b)

o—— e e— e

1 Z(b) 1 1 1 1

Z(b): Z(b) =1 | Z(b):1= Z(b)

e— e
/1\) % 1 \
2-morphism  1e bl 3e1 € SPACETIMES(, 2t L 57 4
2 @) (b) ( -
\H{Z(b) . -— e

"~

Z(b):1= Z(b) | Z(b):1= Z(b)




