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1. Punchline of the talk arXiv:1507.06297.

Cat # alg. closure of R tangential structure physical phenomenon

0 C orientation unitarity

1 SUPERVECTC spin spin-statistics

Manifolds ; certain universal groups

Galois theory ; certain universal torsors

2. A few words on Quantum Field Theory

In mathematics, ∃ various proposed defns of “QFT,” e.g.

functor on bordism category. In physics, QFTs just are

— our job is mathematical models. Topological qfts con-

tinue to provide insights into mathematics in topology,

rep thy, algebraic geo, symplectic geo, functional analysis,

category theory, homotopy algebra, . . . .

All proposed defns of “QFT” package the data as an

assignment in which geometric inputs (manifolds with

metric, spin structure, . . . ) map to algebraic outputs

(“S-”matrices, Hilbert spaces of “states”, categories of

“boundary branes”, . . . ). Locality ⇒ QFTs are a quanti-

zation of sheaves.

3. Orientations and oriented QFT

Consider assignment Or : {manifolds} → {sets}, M 7→
{orientations on M}. It satisfies:

1. It is not (contravariantly) functorial for smooth func-

tions, but is for étale maps (local diffeos).

2. Or(M1 ∪N M2) = Or(M1)×Or(N) Or(M2).

3. Or(f ) = Or(g) if f , g : M1 → M2 are homotopic.

4. Or(M) = Or(M × R)

Lemma: Any assignment F : MAN → SET satisfying 1–

4 is determined by F ({pt}) = F (Rd) with its action of

Z/2 = {±1} ⊆ maps(Rd ,Rd).

Pf: 1 ⇔ presheaf on site MANét of manifolds and étale

map. 2 ⇔ sheaf (essentially) on MANdét. Existence

of good open covers ⇒ F determined by sets F (Rd)

with actions of monoids mapsét(Rd ,Rd). 3 ⇒ these ac-

tions factor through π0(mapsét(Rd ,Rd)) = Z/2. 4 ⇒
F (Rd) = F ({pt}). 2

Main observation: What is Z/2-set Or({pt})? It is the

trivial torsor Z/2 acting on itself by translation.

For some QFTs Z, values depend on orientation of input

manifold: Z : MANOr → {possible values}. But “oriented

manifold” = “manifold M with point in Or(M),” so

MANOr SET{pt}/

MAN SET

p

Or

Alternately, can think of Z as sending unoriented manifold

M to a bundle over Or(M).

4. Unitary structures and unitary QFTs

In SET, Z/2 has unique torsor. In SCHEMESR, ∃ canon-

ical nontrivial Z/2-torsor, namely Spec(C) acted on by

complex conjugation. Indeed, Z/2 = Galabs(R).

Defn: Unitary structures are the sheaf Unitary : MANét →
SCHEMESR satisfying 1–4 above s.t. Unitary({pt}) =

Spec(C) as a Z/2-torsor. Explicitly, Unitary(M) =(
Or(M)× Spec(C)

)
/(Z/2).

If you build MANUnitary as

MANUnitary (SCHEMESR){pt}/

MAN SCHEMESR

p

Unitary

in usual-categories, you don’t get much, because ifM 6= ∅,
Unitary(M) does not have any (R-)points.

Defn: The category MANUnitary of manifolds with unitary

structure (and étale maps) is the above fiber product inter-

preted as a category internal to SCHEMESR. This means

that there is an R-scheme of objects, rather than a set,

and an R-scheme of morphisms.

Provided {possible values} also makes sense R-

algebraically, a unitary QFT is a quantum field theory in-

ternal to SCHEMESR whose inputs range over MANUnitary.

(Actually, use STACKSR instead of SCHEMESR.)

Lemma: Equivalently, a unitary QFT assigns to each

M ∈ MAN a bundle over Unitary(M). 2

E.g.: Suppose that a plain QFT is supposed to assign a

(real) vector space to M. Then a unitary QFT should as-

sign a bundle of vector spaces over Unitary(M), because

the internal category VECTR is the stack QCOH.

So for M connected orientable, get a bundle over

Unitary(M) ∼= Spec(C), i.e. a complex vector space.

But not really: in general, 6 ∃ canonical iso Spec(C) ∼=
Unitary(M) — you can’t decide whether to complex con-

jugate. Really get a complex vector space for each orien-

tation, and orientation reversal = complex conj.
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5. Spin structures and spin QFT

Defn: A spin structure on M ∈ MANd is a principal

Spin(d) bundle P → M with iso P ×Spin(d) GL(d,R) ∼=
Frame(M). Collection of spin structures Spin(M) is not

a set: it is a groupoid.

Spin : MAN → GPOID satisfies 1–4 above (1+2 ; stack

of groupoids).

Lemma: A stack of groupoids F satisfying 1–4 is deter-

mined by groupoid F ({pt}) with action of fundamental

groupoid π≤1(mapsét(Rd ,Rd)) = Z/2n B(Z/2).

Pf: Repeat earlier proof. Calculation π≤1 = Z/2nB(Z/2)

follows from [Bott 1959]. 2

Rmk: For ∞-stacks satisfying 1–4, need full homotopy

type of
⋃
d→∞mapsét(Rd ,Rd) ' O(∞). For 1–3, use

mapsét(Rd ,Rd) ' O(d). This is a version of cobordism

hypothesis. Exercise: Directly construct the ∞-stack

corresponding to a given O(d)- or O(∞)-action.

Main observation: Spin({pt}) is trivial Z/2 n B(Z/2)

torsor. Defn: MANSpin, Spin QFT are as above.

6. Categorified schemes

We could look for interesting Z/2nB(Z/2)-torsors among

stacks over R in the usual sense, but there aren’t any, be-

cause Spec(C) is étale contractible. But this is just a

failure of sufficient categorification.

Defn: A categorified commutative R-algebra is an R-

linear sym mon category (+ abelian, etc.).

E.g.: (MODA,⊗A) for A commutative over R.

Thm (Hall–Rydh): Noetherian stack X with affine sta-

bilizers is functorially recoverable from its cat com R-alg

QCOH(X). Thm (Brandenburg–Chirvasitu–JF): Ditto

affine ind-schemes. Slogan: “Categorified affine.”

Defn: Category of categorified affine schemes is opposite

that of cat com algebras. Spec(A) = Spec(MODA).

In joint work with Chirvasitu and Elmanto, we are devel-

oping the “étale site” of cat affine schemes. Then will

have “categorified stacks” as stacks for this site.

Main example: Cat com R-algerba SUPERVECTC is

monoidally, but not symmetric monoidally, equivalent

to REPC(Z/2). Difference is in symmetry (sign) ⊗
(sign) → (sign) ⊗ (sign); in SUPERVECTC, is −1.

Spec(SUPERVECTC) has no C-points.

7. Spin–statistics QFTs

Defn: A categorified field K is a cat com alg s.t. for

A 6= 0, any map K → A is injective (on morphisms and

on iso classes of objects). K is algebraically closed if for

A 6= 0 and finite-dimensional, and map K → A splits. I

will not repeat here the defn of “finite dimensional”.

Thm (essentially Deligne 2002): Categorified algebraic

closure of R is SUPERVECTC.

Galois group is Z/2nB(Z/2), where Z/2 acts as complex

conjugation and B(Z/2) by “(−1)f ”, the “fermion num-

ber” count. Thus in CATSCHEMESR, ∃ canonical nontriv

Z/2nB(Z/2)-torsor, namely Spec(SUPERVECTC).

Defn: Let SpinStats denote stack on MANét val-

ued in categorified affine schemes satisfying 1–4 s.t.

SpinStats({pt}) = Spec(SUPERVECT) with this Z/2 n
B(Z/2)-action.

SpinStats(M) =
Spin(M)× Spec(SUPERVECT)

Z/2n B(Z/2)
.

Set MANSpinStats
ét and “SpinStats QFT” as above.

These are notions internal to {categorified stacks}: their

objects and morphisms can so on can vary with a param-

eter ranging over, say, Spec(SUPERVECT).

E.g.: Suppose a usual QFT would assign to M a vec-

tor space. Then a SpinStats QFT assigns to M a bundle

of vector spaces over SpinStats(M). Note: a bundle of

(real!) vector spaces over Spec(SUPERVECT) is a complex

super vector space, by definition.

More precisely, for each spin structure, get a complex su-

pervector space. Z/2-equivariance⇒ complex conj = ori-

entation reversal, just as before. B(Z/2)-equivariance ⇒
(−1)f = . What I mean: for any spin manifold, there

is an interesting spin diffeomorphism which is the identity

on underlying manifolds but in which the spin structure

“twists around by 360◦ along the diffeomorphism”; this

diffeo should act on the value of the QFT by (−1)f .

8. Questions and extensions

What about Fp? Expect SUPERVECTF̄p to be separable

closure, but Ostrik has constructed a totally inseparable

extension of SUPERVECTF̄p called VERp.

What about higher categories? Expect an “∞-catego-

rified abs Galois group of R.” Perhaps it is O(∞).

What about positivity? Expect a story starting with R≥0 in

place of R; will need “algebraic geometry over F1.”


