Talk based on arXiv:1507.06297.

0. Main message: sharp analogy between...

\mathbb{C}	Orientations	Unitarity
SUPERVECT	Spin structures	Spin-Statistics

1. Idea of structured field theory

Full definition of "quantum field theory" is still open, but consensus is that the following captures some (e.g. topological) examples:

Idea of a defn: Fix $d \in \mathbb{N}$. Given "local structure" \mathcal{G} (orientations, background fields, metrics, ...; probably \mathcal{G} is a stack on site of *d*-manifolds and embeddings), imagine an (∞, d) -category $\text{BORD}_d^{\mathcal{G}}$ with $\{k\text{-morphisms}\} = \{k\text{-manifolds} \text{ with corners inside germs of } \mathcal{G}\text{-geometric } d\text{-manifolds}\}$. Imagine also an (∞, d) -category dVECT with $\{k\text{-morphisms}\} = \{\text{linear } (d-k-1)\text{-categories}\}$. A $\mathcal{G}\text{-qft}$ is a symmetric monoidal functor $\text{BORD}_d^{\mathcal{G}} \to d\text{VECT}$.

Problems with defn: We don't quite have technology to fully define dVECT (we're close). For most \mathcal{G} , cannot yet define BORD $_d^{\mathcal{G}}$ (units are an issue).

2. Definition of BORD^{\mathcal{G}}_d for sufficiently topological \mathcal{G}

Let $BORD_d = BORD_d^{smooth}$. Lurie has explained how to define $BORD_d$. (C.f. Calaque–Scheimbauer.)

Given \mathcal{G} , can assign to each bordism in BORD_d a span (i.e. correspondence) of spaces:

When \mathcal{G} is sufficiently topological, this assignment is a functor $\text{BORD}_d \rightarrow \text{SPANS}_d(\text{SPACES})$ (= *d*-fold spans of spaces). (\mathcal{G} a stack \Rightarrow compositions. \mathcal{G} is suff. top. if $\mathcal{G}(\text{def. retract})$ is equivalence. This is needed for units.)

Defn (BORD^{\mathcal{G}}): Let SPACES_{{pt}/} = {pointed spaces}.

Defn: SPANS_d(SPACES; dVECT) is (∞, d) -category of "spans with local systems": a *k*-morphism is a *k*-fold span of spaces equipped with a flat bundle of *k*-morphisms in dVECT. (C.f. Haugseng)

Lemma (Lurie): $\{\mathcal{G}\text{-qfts}\} := \{\text{BORD}_d^{\mathcal{G}} \to d\text{VECT}\} = \{\text{maps } \text{BORD}_d \to \text{SPANS}_d(\text{SPACES}; d\text{VECT}) \text{ covering } \text{BORD}_d \xrightarrow{\mathcal{G}} \text{SPANS}_d(\text{SPACES})\}.$

Rmk: Such "qfts fibered over \mathcal{G} " are a version of "relative" (a.k.a. "twisted") field theories with "anomaly" (the linearization of) \mathcal{G} . I.e. linearize \mathcal{G} to a functor \mathcal{G} : BORD_d \rightarrow (d + 1)VECT; then qft fibered over \mathcal{G} is nat. trans. $\mathbb{1} \Rightarrow \mathcal{G}$ where $\mathbb{1}$ is constant functor.

3. The cobordism hypothesis

Thm (Lurie):

{sym mon functors $BORD_d \rightarrow SPANS_d(SPACES)$ } \simeq {spaces with homotopy $GL(d, \mathbb{R})$ -actions}

via $\mathcal{G} \mapsto \mathcal{G}(\{pt\})$. The full *cobordism hypothesis* says:

$$\{\mathcal{G}\text{-qfts}\} \simeq \{\operatorname{GL}(d, \mathbb{R})\text{-equiv bundles over } \mathcal{G}(\{\operatorname{pt}\}) \text{ of }$$

"finite dimensional" linear $(d-1)\text{-cats}\}.$

(Implicit assertion: $GL(d, \mathbb{R})$ acts on $dVECT^{fd}$.)

Rmk: Usually stated for compact gp $O(d) \xrightarrow{\sim} GL(d, \mathbb{R})$, but more naturally about $GL(d, \mathbb{R})$.

4. Main examples

E.g. (tangential structure): Given $G \to GL(d, \mathbb{R})$, get coset space $\mathcal{G}(\{\text{pt}\}) = GL(d, \mathbb{R})/G$ with left $GL(d, \mathbb{R})$ -action. Corresponds to $\mathcal{G} : M \mapsto \{\text{prin. } G\text{-bundles } P \to M \text{ with } \mathsf{T}_M \cong P \times_G \mathbb{R}^d \}$.

Special cases:

- $G = \text{ker}(\text{sign} \circ \text{det} : \text{GL}(d, \mathbb{R}) \to \mathbb{Z}/2) \simeq \text{SO}(d) \Rightarrow \mathcal{G}(\{\text{pt}\}) = \mathbb{Z}/2 \text{ and } \mathcal{G} = \{\text{orientations}\}.$
- G = double cover of above \simeq Spin(d) \Rightarrow $\mathcal{G}(\{ pt \}) = \mathbb{Z}/2 \ltimes B(\mathbb{Z}/2) \text{ and } \mathcal{G} = \{ spin structures \}$

These are the 0th and 1st entries in an infinite sequence:

Defn: $GL(\infty, \mathbb{R}) = \bigcup_{d \to \infty} GL(d, \mathbb{R})$ along $X \mapsto \begin{pmatrix} X & 0 \\ 0 & 1 \end{pmatrix}$.

Thm (Bott): $GL(\infty, \mathbb{R})$ is homotopy abelian (i.e. infinite loop space) with all fundamental groups known. In particular $\pi_{\leq 0}GL(\infty, \mathbb{R}) \simeq \mathbb{Z}/2$ and $\pi_{\leq 1}GL(\infty, \mathbb{R}) \simeq \mathbb{Z}/2 \ltimes B(\mathbb{Z}/2)$. ($\pi_{\leq n}$ means the fundamental *n*-groupoid.)

Cor: {orientations} and {spin structures} : $BORD_d \rightarrow SPANS_d(SPACES)$ correspond (via Cobordism Hypothesis) to left-multiplication action pulled back along $GL(d, \mathbb{R}) \rightarrow GL(\infty, \mathbb{R}) \rightarrow \pi_{\leq n}GL(\infty, \mathbb{R})$ for n = 0, 1.

Rmk: As a *G*-space, left-multiplication action $G \curvearrowright G$ is the *trivial G-torsor*. In SPACES, all torsors are trivial.

5. Unitary qft

Other topoi allow nontrivial torsors. E.g. for field \mathbb{F} with absolute Galois group Gal(\mathbb{F}), set \mathcal{X} = topos of stacks on site of commutative \mathbb{F} -algebras. Then {*G*-torsors in \mathcal{X} } \simeq maps(B Gal(\mathbb{F}), B*G*).

Main e.g.: Since $Gal(\mathbb{R}) = \mathbb{Z}/2$, there is a canonical nontrivial $\mathbb{Z}/2$ -torsor over \mathbb{R} . It is $Spec(\mathbb{C})$ with $\mathbb{Z}/2$ -action by complex conjugation. Why? Because $\mathbb{C} = alg$. closure of \mathbb{R} , and c.c. = $Gal(\mathbb{R})$ -action.

Connection to BORD_d: It makes perfect sense to talk about SPANS_d(\mathfrak{X}), etc., for any topos \mathfrak{X} . Spec(\mathbb{C}) with GL(d, \mathbb{R}) action "c.c.o(sign det)" defines, via Cobordism Hypothesis, a sym mon functor

 $\{\text{unitary}\}$: $BORD_d \rightarrow SPANS_d(\text{stacks over } \mathbb{R}\text{-algebras})$

RHS is a category internal to $\mathcal{X} =$ stacks over \mathbb{R} -algebras, so pullback $\text{BORD}_d^{\text{unitary}}$ is an internal category in \mathcal{X} . This means, e.g., that hom-spaces are \mathbb{R} -stacks.

Defn: Unitary qft is sym mon functor $Z : BORD_d^{unitary} \rightarrow dVECT_{\mathbb{R}}$, where $dVECT_{\mathbb{R}}$ is the *internal* category in \mathfrak{X} of \mathbb{R} -linear (d-1)-categories.

If *M* unorientable, {unitary}(*M*) = \emptyset , since is \mathbb{C} -equivalent to {orientations}(*M*). At each orientation of *M*, *Z*(*M*) is bundle over Spec(\mathbb{C}) — i.e. a \mathbb{C} -linear object — s.t. orientation reversal acts by complex conjugation.

Moreover, $Z(M \times \mathcal{F})$ is nondegenerate *sesquilinear* form on Z(M). (Not necessarily positive definite.)

6. Spin-statistics

{Stacks over the site of com \mathbb{R} -algebras} is not the only topos of "stacks over \mathbb{R} ." Consider instead "categori-fied commutative \mathbb{R} -algebras," i.e. \mathbb{R} -linear sym mon categories. Let $\mathcal{X}=$ stacks thereon.

Rmk: \mathbb{R} -algebra *R* categorifies to (MOD_{*R*}, \otimes_R).

Thm (Deligne): Among categorified com \mathbb{R} -algebras, \mathbb{C} (i.e. $VECT_{\mathbb{C}}$) is not algebraically closed. Rather, "categorified algebraic closure" of \mathbb{R} is SUPERVECT_{\mathbb{C}}.

Thm: Extension $VECT_{\mathbb{R}} \rightarrow SUPERVECT_{\mathbb{C}}$ is Galois with *categorified Galois group* $GAL(\mathbb{R}) = \mathbb{Z}/2 \ltimes B(\mathbb{Z}/2).$

 $\mathbb{Z}/2$ acts by complex conjugation. B($\mathbb{Z}/2$) acts by " $(-1)^{f}$," the endomorphism of identity functor that is +1 on even part and -1 on odd part (f = "fermion number").

Thm: {*G*-torsors in this \mathcal{X} } \simeq maps(BGAL(\mathbb{R}), B*G*).

Rmk: For *G* a discrete group, maps(BGAL(\mathbb{R}), B*G*) = maps(BGal(\mathbb{R}), B*G*), since $\pi_{\leq 0}$ GAL(\mathbb{R}) = Gal(\mathbb{R}), so no new torsors. But for *G* a group among groupoids....

Cor: In this \mathfrak{X} , there is a canonical nontrivial $\mathbb{Z}/2 \ltimes B(\mathbb{Z}/2)$ -torsor, namely Spec(SUPERVECT_C).

Defn: A *spin–statistics qft* Z is a \mathcal{G} -qft for \mathcal{G} the functor BORD_d \rightarrow SPANS_d(\mathcal{X}) corr. to Spec(SUPERVECT_C) $\in \mathcal{X}$ with GL(d, \mathbb{R})-action via GL(d, \mathbb{R}) $\rightarrow \mathbb{Z}/2 \ltimes B(\mathbb{Z}/2)$.

(Implicit: $dVECT_{\mathbb{R}}$ makes sense internal to this \mathfrak{X} .)

Unpacking: If *M* is unspinnable, $\mathcal{G}(M) = \emptyset$, since it becomes equivalent to {spin structures}(*M*) when basechanged to SUPERVECT_C. For *M* with spin structure, Z(M) is a C-linear *super* object (super vector space, super category, etc.), subject to rule $Z(M \times \mathscr{A}) = (-1)^{f}|_{Z(M)}$.

Defn: " \mathscr{L} acts by $(-1)^{f}$ " is the *spin-statistics theorem*. It says that *spinors* ((-1)-eigenstates of \mathscr{L}) are *fermions* ((-1)-eigenstates of $(-1)^{f}$). N.b.: $\mathscr{L} = -$.

7. Even higher-categorical predictions

There is no reason to stop at "categorified com \mathbb{R} -algebras" i.e. sym mon 1-categories over \mathbb{R} . For every *n*, there should be "*n*-categorified com \mathbb{R} -algebras" and an "*n*-categorified Galois group" Gal⁽ⁿ⁾(\mathbb{R}).

Expectation: $\operatorname{Gal}^{(n)}(\mathbb{R})$ is a group object among homotopy *n*-types, and projections $\operatorname{Gal}^{(n)}(\mathbb{R}) \to \operatorname{Gal}^{(n-1)}(\mathbb{R})$ comprise a Postnikov tower.

Defn: $\lim_{n \to \infty} B \operatorname{Gal}^{(n)}(\mathbb{R})$ is the ∞ -categorified étale homotopy type of Spec(\mathbb{R}).

Question: What is it? All I know is $\pi_1 = \pi_2 = \mathbb{Z}/2$.

Option: Perhaps $\prod_n B^n(\mathbb{Z}/2)$?

That would be boring.

Option: Perhaps $BGL(\infty, \mathbb{R})$?

If so, then completely explains unitarity, spin-statistics.

Option: Perhaps the connected component of the stable sphere, a.k.a. $BGL(\infty, \mathbb{F}_1)$?

If so, then unitarity, spin–statistics are manifestations of the J-homomorphism.