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Talk based on arXiv:1507.06297.

0. Main message: sharp analogy between. . .

C Orientations Unitarity

SUPERVECT Spin structures Spin-Statistics

1. Idea of structured field theory

Full definition of “quantum field theory” is still open, but

consensus is that the following captures some (e.g. topo-

logical) examples:

Idea of a defn: Fix d ∈ N. Given “local structure” G (ori-

entations, background fields, metrics, . . . ; probably G is

a stack on site of d-manifolds and embeddings), imagine

an (∞, d)-category BORDGd with {k-morphisms} = {k-

manifolds with corners inside germs of G-geometric d-

manifolds}. Imagine also an (∞, d)-category dVECT with

{k-morphisms} = {linear (d−k−1)-categories}. A G-qft

is a symmetric monoidal functor BORDGd → dVECT.

Problems with defn: We don’t quite have technology to

fully define dVECT (we’re close). For most G, cannot yet

define BORDGd (units are an issue).

2. Definition of BORD
G
d for sufficiently topological G

Let BORDd = BORDsmoothd . Lurie has explained how to

define BORDd . (C.f. Calaque–Scheimbauer.)

Given G, can assign to each bordism in BORDd a span (i.e.

correspondence) of spaces:

N1 N2

M

G7→
{G-structures on M}

{G-strs on N1} {G-strs on N2}

restrict restrict

When G is sufficiently topological, this assignment is a

functor BORDd → SPANSd(SPACES) (= d-fold spans of

spaces). (G a stack ⇒ compositions. G is suff. top. if

G(def. retract) is equivalence. This is needed for units.)

Defn (BORD
G
d ): Let SPACES{pt}/ = {pointed spaces}.

BORDGd SPANSd(SPACES{pt}/)

BORDd SPANSd(SPACES)

p

G

Defn: SPANSd(SPACES; dVECT) is (∞, d)-category of

“spans with local systems”: a k-morphism is a k-fold span

of spaces equipped with a flat bundle of k-morphisms in

dVECT. (C.f. Haugseng)

Lemma (Lurie): {G-qfts} := {BORDGd → dVECT} =

{maps BORDd → SPANSd(SPACES; dVECT) covering

BORDd
G→ SPANSd(SPACES)}.

Rmk: Such “qfts fibered over G” are a version of “rel-

ative” (a.k.a. “twisted”) field theories with “anomaly”

(the linearization of) G. I.e. linearize G to a functor

G : BORDd → (d + 1)VECT; then qft fibered over G is

nat. trans. 1⇒ G where 1 is constant functor.

3. The cobordism hypothesis

Thm (Lurie):

{sym mon functors BORDd → SPANSd(SPACES)}
' {spaces with homotopy GL(d,R)-actions}

via G 7→ G({pt}). The full cobordism hypothesis says:

{G-qfts} ' {GL(d,R)-equiv bundles over G({pt}) of

“finite dimensional” linear (d − 1)-cats}.

(Implicit assertion: GL(d,R) acts on dVECTfd.)

Rmk: Usually stated for compact gp O(d)
∼
↪→ GL(d,R),

but more naturally about GL(d,R).

4. Main examples

E.g. (tangential structure): Given G → GL(d,R), get

coset space G({pt}) = GL(d,R)/G with left GL(d,R)-

action. Corresponds to G : M 7→ {prin. G-bundles P → M

with TM ∼= P ×G Rd}.

Special cases:

• G = ker(sign ◦ det : GL(d,R) → Z/2) ' SO(d) ⇒
G({pt}) = Z/2 and G = {orientations}.

• G = double cover of above ' Spin(d) ⇒
G({pt}) = Z/2nB(Z/2) and G = {spin structures}

These are the 0th and 1st entries in an infinite sequence:

Defn: GL(∞,R) =
⋃
d→∞ GL(d,R) alongX 7→

(
X 0
0 1

)
.

Thm (Bott): GL(∞,R) is homotopy abelian (i.e. infinite

loop space) with all fundamental groups known. In par-

ticular π≤0GL(∞,R) ' Z/2 and π≤1GL(∞,R) ' Z/2 n
B(Z/2). (π≤n means the fundamental n-groupoid.)

Cor: {orientations} and {spin structures} : BORDd →
SPANSd(SPACES) correspond (via Cobordism Hypothesis)

to left-multiplication action pulled back along GL(d,R)→
GL(∞,R)→ π≤nGL(∞,R) for n = 0, 1.

Rmk: As a G-space, left-multiplication action G y G is

the trivial G-torsor. In SPACES, all torsors are trivial.
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5. Unitary qft

Other topoi allow nontrivial torsors. E.g. for field F with

absolute Galois group Gal(F), set X = topos of stacks

on site of commutative F-algebras. Then {G-torsors in

X} ' maps(B Gal(F),BG).

Main e.g.: Since Gal(R) = Z/2, there is a canonical

nontrivial Z/2-torsor over R. It is Spec(C) with Z/2-

action by complex conjugation. Why? Because C = alg.

closure of R, and c.c. = Gal(R)-action.

Connection to BORDd : It makes perfect sense to talk

about SPANSd(X), etc., for any topos X. Spec(C) with

GL(d,R) action “c.c.◦(sign det)” defines, via Cobordism

Hypothesis, a sym mon functor

{unitary} : BORDd → SPANSd(stacks over R-algebras)

RHS is a category internal to X = stacks over R-algebras,

so pullback BORDunitaryd is an internal category in X. This

means, e.g., that hom-spaces are R-stacks.

Defn: Unitary qft is sym mon functor Z : BORDunitaryd →
dVECTR, where dVECTR is the internal category in X of

R-linear (d − 1)-categories.

If M unorientable, {unitary}(M) = ∅, since is C-equivalent

to {orientations}(M). At each orientation of M, Z(M)

is bundle over Spec(C) — i.e. a C-linear object — s.t.

orientation reversal acts by complex conjugation.

Moreover, Z(M × ) is nondegenerate sesquilinear form

on Z(M). (Not necessarily positive definite.)

6. Spin–statistics

{Stacks over the site of com R-algebras} is not the only

topos of “stacks over R.” Consider instead “categori-

fied commutative R-algebras,” i.e. R-linear sym mon cat-

egories. Let X = stacks thereon.

Rmk: R-algebra R categorifies to (MODR,⊗R).

Thm (Deligne): Among categorified com R-algebras,

C (i.e. VECTC) is not algebraically closed. Rather, “cate-

gorified algebraic closure” of R is SUPERVECTC.

Thm: Extension VECTR → SUPERVECTC is Galois with

categorified Galois group GAL(R) = Z/2nB(Z/2).

Z/2 acts by complex conjugation. B(Z/2) acts by “(−1)f ,”

the endomorphism of identity functor that is +1 on even

part and −1 on odd part (f = “fermion number”).

Thm: {G-torsors in this X} ' maps(BGAL(R),BG).

Rmk: For G a discrete group, maps(BGAL(R),BG) =

maps(B Gal(R),BG), since π≤0GAL(R) = Gal(R), so no

new torsors. But for G a group among groupoids. . . .

Cor: In this X, there is a canonical nontrivial Z/2 n
B(Z/2)-torsor, namely Spec(SUPERVECTC).

Defn: A spin–statistics qft Z is a G-qft for G the functor

BORDd → SPANSd(X) corr. to Spec(SUPERVECTC) ∈ X

with GL(d,R)-action via GL(d,R)→ Z/2nB(Z/2).

(Implicit: dVECTR makes sense internal to this X.)

Unpacking: If M is unspinnable, G(M) = ∅, since it

becomes equivalent to {spin structures}(M) when base-

changed to SUPERVECTC. For M with spin structure,

Z(M) is a C-linear super object (super vector space, super

category, etc.), subject to rule Z(M× ) = (−1)f |Z(M).

Defn: “ acts by (−1)f ” is the spin–statistics theorem.

It says that spinors ((−1)-eigenstates of ) are fermions

((−1)-eigenstates of (−1)f ). N.b.: = .

7. Even higher-categorical predictions

There is no reason to stop at “categorified com R-algebras”

i.e. sym mon 1 -categories over R. For every n, there

should be “n-categorified com R-algebras” and an “n-

categorified Galois group” Gal(n)(R).

Expectation: Gal(n)(R) is a group object among homo-

topy n-types, and projections Gal(n)(R) → Gal(n−1)(R)

comprise a Postnikov tower.

Defn: lim←−B Gal(n)(R) is the ∞-categorified étale homo-

topy type of Spec(R).

Question: What is it? All I know is π1 = π2 = Z/2.

Option: Perhaps
∏
n Bn(Z/2)?

That would be boring.

Option: Perhaps BGL(∞,R)?

If so, then completely explains unitarity, spin–statistics.

Option: Perhaps the connected component of the stable

sphere, a.k.a. BGL(∞,F1)?

If so, then unitarity, spin–statistics are manifestations of

the J-homomorphism.


