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A salad of BV integrals and AKSZ field theories, served over a

bed of properads; it comes spiced with chain-level Poincare

duality and just a pinch of Poisson geometry

Theo Johnson-Freyd, Northwestern University

Research Seminar in Mathematics, Northeastern University, 10 September 2013

Thank you Jonathan for the invitation. And I was told these talks are supposed to be under-
standable and accessible. So please interrupt me with questions, because otherwise they will
be understandable and accessible only to the speaker. My talks are based on a couple pa-
pers: arXiv:1202.1554 with O. Gwilliam, and arXiv:1307.5812, which is very new, and the
references therein.

Before I begin, let me give an over-ambitious outline:

1. Oscillating integrals, homological perturbation theory. This part should be “el-
ementary,” although my goal will be to motivate the homological perturbation lemma
(which is a version of spectral sequences) from the problem of computing expectation
values of observables in path integrals.

2. Feynman diagrams, BV geometry, properads. Properads are like associative al-
gebras, except in an algebra you multiply in a line, and in a properad you multiply in
a directed acyclic graph. One reason for talking about these is because Feynman dia-
grams are already a kind of graph. I won’t talk about much geometry, but I’ll give some
definitions of geometric structures and I’ll assert that they’re important.

3. Poisson AKSZ theory. The last part, if I get to it, is my real motivation. I’ll mention
some conjectures and results about deformation quantization and topological field theories.

1 Oscillating integrals, homological perturbation theory

For me, the start of the whole story is a proposal by Feynman, which is that quantum physics
has something to do with calculating the following integrals:
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The integral is supposed to range over some, often infinite-dimensional, space. Volume forms
on infinite-dimensional manifolds are hairy, although Jonathan, for example, has some ways of
doing them. ~ is called “Planck’s constant,” and is “small.” i =

√
−1. s is the “action,” which is

known (or guessed) and controls the “physics.” f is the “observable,” and 〈f〉 is its “expectation
value,” which is what you actually measure in “experiments.”

As a mathematician, of course, I don’t care what any of these words actually mean. But integrals
are things I do care about. Let’s make it easy and integrate over Rn, and make dVol = dx1 · · · dxn
the standard measure. For now, let’s not decide what type of functions we’re integrating. And
let’s just not worry very much about issues of convergence. Physicists like to calculate now,
justify later. Also, I’m going to absorb i into ~, which is just a variable anyway, and replace i

~
with 1

~ . Maybe this means that ~ is now “pure imaginary.”

So, let’s see. dVol is translation invariant — this is its defining property — meaning that we
have an “integration by parts” formula. This means that:

∫
∂

∂xi

(
g es/~

)
= boundary term

Let’s assume that the boundary term vanishes. Then

0 =

∫
∂

∂xi

(
ges/~

)
=

∫
∂g

∂xi
es/~ +

1

~

∫
g
∂s

∂xi
es/~

Put another way: 〈
~
∂g

∂xi
+ g

∂s

∂xi

〉
= 0, i.e.

〈
g
∂s

∂xi

〉
= −~

〈
∂g

∂xi

〉

Any equation like this is called a Ward identity. They’re pretty awesome: with some luck, if
you write down a whole lot of Ward identities, and then solve the system of equations, you get
an answer in terms of 〈1〉 = 1.

But it’s still a mess. A general organizing principal is: package up messes as chain complexes.
See, we have n maps of the form g 7→ g ∂s

∂xi
+~ ∂g

∂xi
, and 〈·〉 vanishes on the images of all of them.

Let’s write O for the algebra of observables. Then the Ward identities are equivalent to saying
that 〈·〉 vanishes on the image of the map:

O⊕n O

 ∂s
∂x1

+~ ∂
∂x1

...
∂s
∂xn

+~ ∂
∂xn


(∂)

Think of this as a two-term chain complex in degrees 1 and 0. Then the point is that 〈·〉 is
actually a map out of H0 of this complex.

Hope: H0 of this complex is something small. At best, it’s one-dimensional, and then identifying
[1] ∈ H0 with 1 ∈ C gives the map 〈〉.
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In fact, this hope depends a lot on what types of functions are in O.

But we also want a procedure for actually calculating 〈f〉. So let’s make some assumptions.
First, let’s assume ~� 1, and be satisfied calculating 〈f〉 as an element of CJ~K, meaning we’re
satisfied if we can calculate 〈f〉 mod ~N for large N .

Look back at the Ward identity. Recall that the critical locus of s is the symultaneous vanishing
locus of ∂s

∂x1
, . . . , ∂s

∂xn
. Then the Ward identity says: “Suppose f vanishes on the critical locus

of s. Then 〈f〉 = O(~).” This is the stationary phase approximation.

For simplicity, let’s suppose that s has a critical point at the origin. Then:

s(x) =
1

2

n∑
i,j=1

aijxixj + b(x)

where aij is the Hessian of s at 0, and b(x) is divisible by third-powers in the xis. Let’s also
suppose that this is an isolated critical point, so that the matrix a is invertible.

Exercise: Prove that if f(0) = 0, then there exist g1, . . . , gn so that in a neighborhood of the
origin, f(x) =

∑
i gi(x) ∂s

∂xi
.

Actually, suppose we can find formulas for the gis. Then for any f , we’d have:

〈f〉 = 〈f(0)〉+ 〈f − f(0)〉 = 〈f(0)〉+
∑
i

〈
gi(x)

∂s

∂xi

〉
= 〈f(0)〉 − ~

∑
i

〈
∂gi
∂xi

〉
, (∗)

modulo contributions from outside of the neighborhood of the origin.

Actually, let’s just assume that these contributions go away, and declare that O = CJx1, . . . , xnK,
so that we’re working in formal power series. This will also help later.

Second, what type of data is the n-tuple (g1, . . . , gn)? It’s a vector that depends on x, i.e. a
vector field. Actually, we should have recognized this back when we wrote down our two-term
chain complex: O⊕n = T is the space of vector fields. Then

∑
i gi

∂s
∂xi

is nothing but the action

of ~g on s — vector fields act as derivations — and
∑

i
∂gi
∂xi

is nothing but the divergence of ~g.

Actually, the whole differential is just (~ times) the divergence with respect to es/~dVol, so it’s
coordinate-independent.

Let’s return to the exercise, and find ~g provided we’re working in formal power series. We have
Taylor’s expansion:

f(x) =
∑

fk xk +
1

2

∑
fkl xkxl + . . .

?
=
∑

gi(x) aijxj +
∑

gi(x)
∂b(x)

∂xi

And aij is invertible, and ∂b(x)
∂xi

vanishes at least second order. Let’s call η = a−1. Then, dropping
the

∑
signs, we have:

f(x) = fkηkiaijxj +
1

2

∑
fkl xkxl + . . .
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So we should set gi(x) =
∑

k fkηki+O(x). Then to calculate the next term, we can assume that
f is quadratic:

1

2

∑
fkl xkxl + · · · = (fklxkηli)aijxj + . . .

So for such an f , we could choose gi(x) =
∑

kl fklxkηli + . . . .

Rather than working out what’s going on with the bs, which always raise degree in x, let’s
revise (∗). For any f ∈ O = CJx1, . . . , xnK, let’s define η(f) = (η1(f), . . . , ηn(f)) ∈ T so that
f = f(0)+

∑
ij ηi(f) aijxj . Here’s one way to do this: declare that if f is homogeneous of degree

N ≥ 1, then

ηi(f) =
1

N

∂f

∂xi

and η(constant) = 0.

With this in hand, we have:

〈f〉 = 〈f(0)〉+

〈∑
ij

ηi(f) aijxj

〉
= 〈f(0)〉+

〈∑
i

ηi(f)
∂s

∂xi

〉
−

〈∑
i

ηi(f)
∂b

∂xi

〉
=

= 〈f(0)〉 − ~

〈∑
i

∂

∂xi
ηi(f)

〉
−

〈∑
i

ηi(f)
∂b

∂xi

〉
(∗∗)

Does this help simplify things? Yes: the middle term is higher-order in ~, and the last term is
higher-order in x (since η drops degree in x by 1, but ∂b

∂xi
is degree at least 2 in x). So we can

just keep repeating this, and as long as everything is continuous for the power series topology
on OJ~K = CJx1, . . . , xn, ~K, then we win.

Let’s try to understand (∗∗) in relation to the little chain complex (∂). See, we had a pretty
complicated map ∂ : T → O. But it came in some pieces:

∂ = a+ δ

where

a(~g) =
∑
ij

aij gi(x)xj

δ(~g) =
∑
i

(
gi(x)

∂b

∂xi
+ ~

∂gi
∂xi

)

It’s immediately clear that, thinking of a as a differential for its own chain complex, then
H0

(
T a→ O

)
= C. Indeed, that’s what η witnesses. Let p : O → C be p(f) = f(0), and

ι : C → O is the canonical inclusion (in particular, p ◦ ι = id). Then η : O → T is a homotopy
such that ι ◦ p = id− [a, η] in degree 0, where [a, η] = a ◦ η + η ◦ a, since both shift homological
degrees by an odd amount. Of course, I’m ignoring right now the homology in degree 1, but I’ll
come back to it.
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Then δ is a perturbation of the differential, turning a into ∂. Iterating (∗∗) says that after this
perturbation, we can get a new projection p̃ : O → CJ~K, which works for the differential ∂
rather than for a, given by the formula:

p̃ = p+ p ◦ (−δ ◦ η) + p ◦ (−δ ◦ η) ◦ (−δ ◦ η) + · · · = p ◦ (id + δη)−1

And this converges since δη raises degree, and so is small for the power series topology.

Well, it almost says this. What we’ve actually proven is that if H0

(
T a+δ→ O

) ∼= CJ~K, then the
projection O → H0 is given by p̃. Equivalently, if the original oscillating integral 〈f〉 has an
asymptotic expansion as ~ → 0, then it’s given by the above calculations. We haven’t actually
proven that the homology for the perturbed differential isn’t much smaller. This has practical
importance: what if you and I go and applying Ward identities in different ways? Can we get
different answers? Maybe there’s just no asymptotic expansion. We certainly didn’t touch the
analytic estimates necessary to verify that.

What we need to know is that the closed elements of T for the differential a don’t all of a sudden
start messing things up. Of course, if you’re closed for a, you won’t be closed to ∂. But since
∂ = a+ o(1), it seems like the closed guys should just move a little bit?

Well, who’s a-closed? Say n = 2 and a =
(
1 0
0 1

)
. Consider ~g = x1

∂
∂x2
− x2 ∂

∂x1
= (−x2, x1). Then

a(~g) = −x2x1 + x1x2 = 0. In general, the closed guys are precisely the image of the O-linear
map T ∧O T → T given on a basis by ∂

∂xi
∧ ∂

∂xj
7→
∑

k akixk
∂
∂xj
−
∑

k akjxk
∂
∂xi

. So let’s also

call this a, and extend the complex:

T ∧ T a→ T a→ O

Then there’s no homology in degree 1, which you can witness by finding a homotopy η : T →
T ∧ T . Does the perturbation δ extend? Yes. There is such a thing as the divergence of a
bivector field, and also you can contract a bivector field with the one-form db to get a vector
field.

Actually, we really ought to go all the way and work with multivector fields, since there’s
currently homology in degree 2. So our whole complex will be

∧• T . It’s a graded commutative
algebra, just like the de Rham complex is. It’s convenient to change notation slightly, and let ξi
denote the variable in homological degree 1 corresponding to ∂

∂xi
. Then:∧•T = CJξ1, . . . , ξn, x1, . . . , xnK = Ŝym
(
⊕
)

where I’ve changed notation so that now means the vector space spanned by the ξis, so it’s in
homological degree 1. So symmetric powers of it are really wedge powers, because of the sign
rules of chain complexes.

The simple differential a can now be written as:

a =
∑
ij

aij xi
∂

∂ξj

and the perturbation is:

δ =
∑
i

(
∂b(x)

∂xi

∂

∂ξi
+ ~

∂2

∂xi∂ξi

)
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The simple differential even has a simpler definition. The graded vector space ⊕ is in degrees

1 and 0, and since the matrix a is invertible, we can make it into an exact complex
a→ .

Then the whole thing with the simple differential a is what you get by applying the “completed
symmetric algebra” functor to this exact complex. In characteristic 0, taking symmetric powers
is an exact functor. So this proves that the complex

(
V =

∧• T , ∂V = a
)

has as its homology

just Ŝym(0) = C.

And if we try to turn on the differential, we can use the formula p̃ that we already have. We
arrive at the following basic fact, discovered in the 70s by people trying to understand spectral
sequences:

Homological Perturbation Lemma: A retraction of a chain complex (V, ∂V ) onto another
chain complex (H, ∂H) consists of chain maps ι : H → V and p : V → H satisfying p◦ι = id, and
a homotopy η : V• → V•+1 satisfying ι ◦ p = id− [∂V , η]. (Signed commutator!) A deformation
of (V, ∂V ) is a map δ : V• → V•−1 satisfying (∂V + δ)2 = 0. A deformation is small with respect
to a retraction if id + δη : V → V is invertible (this is a map of graded vector spaces, not
complexes!). If it is, then the whole retraction deforms: you get new maps p̃ = p(id + δη)−1,
ι̃ = ι− η(id + δη)−1δι, η̃ = η(id + δη)−1, and δ̃ = p(id + δη)−1δι : H → H, which together give
a retraction of (V, ∂V + δ) onto (H, ∂H + δ̃).

Proof: Exercise. It’s pure algebraic manipulation.

2 Feynman diagrams, BV geometry, properads

Equation (∗∗) also has a diagrammatic meaning. Let’s draw a vertical line for the vector
space with basis the variables x1, . . . , xn. (So this is the dual vector space to the Rn that we’re
integrating over.) We’ll put things next to each other for tensor products, and we’ll contract
edges when we want to contract indices, i.e. compose tensors. This is a notation developed by

Penrose. Then for example the element xi ∈ would be written as:

xi

Let’s embed symmetric tensors among all tensors. And let’s agree to draw the tensor
∑
fijkxixjxk

as:

f =
∑
ijk

fijk
xi xj xk

and more generally the Nth Taylor coefficient of f as a box with an f in it and N edges coming
out. Then

f =
∑
N

f

. . .
N

N !
∈ Ŝym

( )
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and the N ! counts the number of symmetries of the diagram.

How should we draw a vector field like ~g of η(f)? Let’s agree to use a wavy edge to denote

the vector space with basis ∂
∂x1

, . . . , ∂
∂xn

. Then the Nth Taylor coefficient of ~g is really a tensor

in · · · with N normal edges. So

g =
∑
N

g

. . .
N

N !

What does the homotopy η : O → T do? On a symmetric tensor with only edges, it takes the

first (say) edge and applies the matrix a−1 : → . For a more general tensor, it averages over

all the choices of a edge to choose.

η(f) =
∑
N≥1

1

N !
f

. . .

The one-form ∂b
∂x , on the other hand, is a map → Ŝym( ):

∂b

∂x
=
∑
N

1

N ! b

. . .
N

And finally, there’s the divergence operation, which acts on g via:

g

. . .

7→
N∑
i=1

g

. . .

where the dot attaches to the ith strand out of N total.

Exercise: Drop some of the diagrammatic decorations. By iterating (∗∗), conclude that 〈f〉 is
given by a “sum of Feynman diagrams,” namely the sum of closed connected diagrams with one
f vertex and lots of b vertices, weighted by ~β where β is the first Betti number of the diagram,
and also weighted by the number of automorphisms of the diagram; and maybe there are some
signs to work out too.

I bring this up because it emphasizes the following: differential operators acting on completed
symmetric algebras are coordinated by directed acyclic graphs. To really emphasize this, let’s

work just with the complex =
a→ . Then all of our graphs above are to be read from bottom

to top, even if I don’t draw arrows.
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So we have two complexes. We have A = Ŝym( ), with its differential a, and we have a

deformation AJ~K = Ŝym( ⊕ ~) with the differential ∂ = a + δ. This deformed complex is a
graded commutative algebra, but not a dg algebra. The differential ∂ = a + δ is a derivation
modulo ~. But its order-~ term is ~

∑ ∂2

∂ξi∂xi
, which is second-order. Its principal symbol is

the biderivation (f1, f2) 7→ ∂(f1f2) − (f1∂f2 + f2∂f1), with some signs thrown in if the fi are
odd. This is actually a version of a “Poisson bracket.” A Poisson bracket on an algebra A
is a biderivation making A into a Lie algebra. What we have is a biderivation making A[−1]
into a dg Lie algebra. For some reason, I will call this new thing “Pois0,” and the old thing
“Pois1.”

Exercise: Suppose that A is a graded commutative algebra, with a differential ∂ on AJ~K which
is second-order, but first-order modulo ~. Then P : (f1, f2) 7→ ~−1

(
∂(f1f2) − (f1∂f2 + f2∂f1)

)
exists and makes A into a Pois0 algebra.

This is the structure proposed by Batalin and Vilkovisky, and so ought to be called a “BV
algebra.” Actually, Batalin–Vilkovisky asked also that the Poisson structure be “symplectic”
in an appropriate sense, but we won’t. There’s a good reason not to. The difference between
Poisson and symplectic (at least in finite dimensions) is that a Poisson thing is locally a family
of symplectic things (and globally maybe more complicated), which can jump in dimension.
So as soon as you want to have “parameters” in your physics (say, the boundary value of a
field appearing in a path integral), then you don’t want symplectic: you want Poisson. And
especially when you want “symmetries,” including “non-manifest symmetries” and “dualities”
and all the things that make physicisits very excited, you can’t even work with Poisson things
that are globally families of symplectics.

But, as I was saying, the structure of a differential which is a derivation mod ~, but actually
second order — that structure is not a “BV algebra,” because Getzler gave that name to a
closely related but different thing having to do with Deligne’s conjecture (now Theorem, probably
Kontsevich and/or Tamarkin?) about Hochschild cohomology. Really Beilinson and Drinfel’d (in
their big book on chiral algebras) were the ones to emphasize to mathematicians the importance
of these structures, so Costello–Gwilliam propose the name “BD.”

In nature, however, it turns out that the axioms of BD algebra are a little too strict. Here’s a
relaxation:

Definition: A semistrict homotopy BD algebra is a graded commutative algebra A along with
a differential ∂ on AJ~K, such that modulo ~N , ∂ is an Nth-order differential operator. I also
demand that ∂(1) = 0. So for example, it makes A itself into a dg algebra.

Recall that an N th-order differential operator, according to Grothendieck, is a linear operator
D such that for every element f ∈ A, the operator g 7→ D(fg) − fD(g) is an (N − 1)th-order
differential operator.

The word “semistrict” in the definition is the reminder that I’m not relaxing the commutativity
or associativity of A, nor the Grothendieck definition of differential operator. I can get away
with this if I’m in characteristic 0. In characteristic p, or over Z, you really need to work with
an even more homotopical definition.

The principal symbol of an Nth-order differential operator D is the derivation in N variables
that measures the failure of D to be an (N − 1)th-order differential operator.
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Exercise: Let A be a semistrict homotopy BD algebra. Let LN be the derivation in N variables
such that ~N−1LN is the principal symbol of ∂ on AJ~K/(~N ). Then the LN s together make
A[−1] into an L∞ algebra. What’s an L∞ algebra? It’s a generalization of dg Lie algebra. It has
a differential L1. It has a bracket L2, for which L1 is a derivation. The Jacobi identity fails, but
it’s failure is the L1-derivative of something L3. And this L3 satisfies its own version of Jacobi,
but again only up to a homotopy L4. Etc. If you want, the exercise is to unpack the definition
of L∞ algebra, to make the exercise true.

This justifies:

Definition: A semistrict homotopy Poisd algebra is a graded commutative algebra A along with
a sequence L1, L2, . . . where LN is a derivation in N variable, that together make A[d− 1] into
an L∞ algebra. (“Semistrict” again means that commutativity, associativity, and Leibniz rules
are kept strict.)

Why the indexing? Well, LN itself has degree −1 + d(N − 1), and when d is even, they’re all
symmetric in all of their inputs, and a few other reasons.

I should also mention: there are two versions of L∞, the flat kind and the curved kind. The
curved kind also has an operator L0. It corresponds to BD algebras for which ∂(1) 6= 0. I don’t
like them as much.

There’s some cool geometry here, but let me return to diagrams, which have to do with completed
symmetric algebras.

Definition: A formal manifold is a vector space of chain complex X = , which we think of as

the linear functions on the manifold, and we only will really care about the algebra A = Ŝym(X).
Then you get things like semistrict homotopy BD formal manifold and semistrict homotopy Poisd
formal manifold, meaning such a structure on Ŝym(X), continuous for the power series topology.
Note that any formal manifold has an origin where all x ∈ X have value 0.

A structure is coflat if it only outputs things that vanish at the origin, i.e. ∂(f) ∈ 〈X〉 ⊆ A for
all f ∈ A, where 〈X〉 is the closed ideal generated by X. For convenience, I’ll only work with
coflat things. Also, for organization purposes, I’d like to ask that L1 = ∂ mod ~ have no linear
part. I mean, it will have a linear part, but I’d like to keep it as part of the chain complex X.
See, L1 is a continuous derivation, so it’s determined by its action on X ⊆ A, and if it’s coflat,
then L1(x) ∈ 〈X〉 for all x ∈ X. So it’s L1(x) = y+ . . . where y ∈ X depends linearly on x and
· · · ∈ 〈X2〉 is quadratic or higher. Then the map ∂X : x 7→ y is itself a dg structure, and makes
X into a chain complex. So let’s think of the data as

(
(X, ∂X), all the nonlinear stuff

)
.

Now we get to apply the homological perturbation lemma:

Corollary: In a (flat and coflat) semistrict homotopy BD formal manifold, there exists a differ-

ential δ̃ = o(1) on Ŝym(H•(X))J~K making that smaller algebra quasiisomorphic to
(
Ŝym(X)J~K, ∂

)
.

Proof: Extend ∂X as a derivation. Then ∂ − ∂X = o(1), and so apply HPL. (Actually, there’s
a more general proof, which shows that H•(X, ∂X) is in fact itself a semistrict homotopy BD
manifold.) Corollary of the corollary: In particular, if H•(X) is concentrated in degree 0,

then H•
(
Ŝym(X)J~K, ∂

) ∼= Ŝym(H0(X))J~K as vector spaces.

Now, the diagrammatics. The diagrammatics for semistrict homotopy Poisd formal manifolds
are a little easier. Each LN is a derivation of N variables, so it’s uniquely determined by a
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map X⊗N → A. Expand it in Taylor series. You get a bunch of maps X⊗N → X⊗M , and
by (co)flatness N,M ≥ 1, and by convention there’s no map with (N,M) = (1, 1). So in the
diagrammatics we have a corolla (i.e. vertex) with N inputs and M outputs for each N,M 6= 0
and (N,M) 6= (1, 1):

...

...
M

N

The outgoing strands transform trivially under permutations, and the incoming strands trans-
form trivially if d is even or by the sign representation if d is odd.

These satisfy an equation of the form:

∂X

 ...

...
M

N

 =
∑

m,n≥1,
(m,n)6=(1,1)

... ...

... ...

m M−m

n N−n

and you should sum or average over the ways to choose an output of the lower vertex to connect
to an input of the outer one, and you should sum or average over ways to permute the incoming
and outgoing strands, and you should perhaps include some numerical factors depending on
your conventions for Taylor coefficients.

What about hBD? We can expand the differential ∂ on A in powers of ~: ∂ = ∂1 + ~∂2 + . . . ,
where ∂K is an Kth-order differential operator on A. In coordinates, each ∂K itself is a sum of
terms, ∂K = ∂0,K + ∂1,K + . . . , where ∂N,K is homogeneous kth-order differential operator, i.e.
the canonical differential operator with its principal symbol. It’s convenient to instead record
the degree N and also β = K−N , which tells you how many extra powers of ~ there are that you
didn’t need for an operator of that order. Anyway, you get a bunch of corollas, after expanding
the output in Taylor series:

β
...

...

M

N

with the rules that M,N 6= 0, and that (M,N, β) 6= (1, 1, 0).

And again, there’s a quadratic relation:

∂X

 β
...

...

M

N

 =
∑

m,n,β1,β2
k=β−β1−β2+1≥1

β1

β2

... ...

... ...

···

m M−m

n N−n

k
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What’s the diagrammatic interpretation of β? Well, it’s the genus of the corolla. By definition,
the genus of a connected graph is its first Betti number (i.e. 1− euler characteristic). If you
declare that any corolla labeled β contributes an “internal genus” of β, then the defining equation
above is homogeneous for genus.

Both of these are examples of properads:

Definition: An associative algebra is something with multiplications controlled by beads on a
directed line. A properad is something with multiplications parameterized by connected directed
acylic graphs (i.e. no oriented cycles, but genus is OK).

The variations are endless. You’ve probably heard of operads, which have multiplications con-
trolled by rooted trees. Here’s a few more. A wheeled properad uses connected directed graphs,
that might have cycles. A dioperad uses directed trees. A prop uses possibly-disconnected di-
rected graphs. I tend to work with genus-graded properads, for which in any equation the genus
of the graph must be preserved, but vertices are allowed to have internal genus.

An action of any of these is an interpretation, compatible with the diagrammatics, in which the
edge is assigned a chain complex, and the vertices/corollas/beads are assigned tensors.

The examples so far have been quasifree, meaning that the properad in question is free if you
forget the dg structure, but has some interesting differential. Quasifree things are important
because it’s relatively easy to map out of them, and in particular to make them act. Especially
if the generators are well-ordered and the differential of any generator is a composition of earlier
generators. Then you can try to construct maps out of such a guy inductively. Exercise:
By induction, the obstruction to defining a generator, namely the value of the right-hand side
under and putative map, is closed. Corollary: You can continue the induction iff it vanishes
in homology.

Here’s some vocabulary from model category theory. Basically, “cofibrant” means “easy to map
out of.” “Fibrant” means “easy to map into.” Slightly more precisely, for pretty much any
category of dg algebraic gadgetry, you can declare that a map is a fibration if it is a surjection
(and an object is fibrant if the canonical map to the terminal object is a fibration), and a weak
equivalence or acyclic if it is an isomorphism in homology. Then an object P is cofibrant if
for any acyclic fibration Q → R, any map P → R admits a lift P → Q. The basic theorem
(in characteristic 0, for the way I’ve said it — you need that the representation theory of the
symmetric group is semisimple, or you need to require that the generators only transform in pro-
jective representations of the symmetric group under permuting the incoming/outgoing strands)
is that quasifree things with this well-ordering of the generators are always cofibrant.

Exercise: Prove this.

3 Poisson AKSZ

So far, we’ve talked about semistrict homotopy BD algebras and formal manifolds, and the dia-
grammatics and the homological perturbation theory thereof. The motivation is that these give
generalizations of oscillating integrals. Implicit is that perhaps we will need such generalizations
in order to formalize quantum field theory, or in order to define and then say things about
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interesting examples. But I haven’t really said anything about how to construct nontrivial hBD
formal manifolds.

Then again, maybe you believe that “quantum” has something to do with integrals (sum over
states/histories. . . ), but I certainly haven’t talked at all about “field theory.” So as motivation
for some more abstract nonsense, let’s really look at field theory.

Let M be a smooth manifold, and X the vector space of linear functions on a formal manifold,
so the formal manifold itself is X∗, at least if X is finite-dimensional. In sigma models, you
define a field to be a map M → X∗. So the space of all maps is C∞(M) ⊗ X∗, and this
is supposed to be an infinite-dimensional manifold over which you can compute integrals, or
impose equations of motion, or . . . . Let’s treat it as a formal manifold — what’s the vector
space of linear functions on it? Why, it’s C∞(M)∗ ⊗X, of course! What’s C∞(M)∗? It’s the
space of compactly-supported distributions on M .

Let’s look instead at a particularly easy classical field theory. By definition, classical field theory
is the study of PDE, or perhaps the part of PDE that has some Lagrangian or calculus-of-
variations description. I’d like to focus on the easiest PDE, namely that of being constant. So
my classical equations of motion for a map φ : M → X∗ are dφ = 0.

What’s the space of all fields satisfying the classical EOM? It looks like X∗, or maybe a product
thereof for the different components of M . Now, physics only has “local” measurements, so
we should work only with (co)sheaves. And since we’re already doing some homotopical stuff,
probably we should work only with homotopy sheaves. The homotopy sheafification of the
presheaf that assigns X∗ to every open is exactly ΩdR(−)⊗X∗, with the de Rham differential.
So the derived space of solutions to the EOM is ΩdR(M)⊗X∗, and so the vector space of linear
functions on this is Chains•(M)⊗X, with the boundary map ∂dR. Really, Chains• could be any
homotopy cosheaf computing homology. A good one on smooth manifolds is Chains• = Ωcpt,
the complex of compactly-supported de Rham forms. This is a formal manifold, and so the
algebra of functions is Ŝym(Chains•(M)⊗X).

What if you could give this infinite-dimensional formal manifold an hBD structure? Rewinding
the logic from getting an hBD structure out of an oscillating integral, you’ll see that an hBD
structure on the formal manifold Chains•(M)⊗X should be interpreted as a way of integrating
against an oscillating measure over C∞(M) ⊗ X, where the “action” s imposes the classical
EOM as its critical locus.

Let’s be more down to earth, and set M = R. Then we’re doing “topological quantum mechanics
in X∗” — “quantum mechanics” because we’re on R, and “topological” because the EOM are
dφ = 0, so time durations don’t matter. (It’s topological in R, not in X∗. The “topological” in
“topological quantum field theory” is about the source manifold M , not the target.)

Look at each corolla β
...

...

. It corresponds to a map Chains•(R)⊗#inputs⊗X⊗#inputs → Chains•(R)⊗#outputs⊗

X⊗#outputs, or equivalently a tensor X⊗#inputs → X⊗#outputs where each entry is valued in the
space of linear maps Chains•(R)⊗#inputs → Chains•(R)⊗#outputs.

In physical situations, you should expect that such a linear map is sufficiently continuous to
have an integral kernel, which would then be a distribution in R#inputs+#outputs.

Definition: An hBD structure on the formal manifold Chains•(R)⊗X is quasilocal if for each
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corolla, the corresponding integral kernel is supported in a finite-radius neighborhood of the
diagonal R ↪→ R#inputs+#outputs.

In quantum field theory, you talk about “placing” observables at locations (or perhaps smeared
out near locations) in spacetime. A quasilocal corolla can move observables, but not very far,
and nearby observables can interact, but far away ones cannot. That’s the idea, anyway. This
is what happens for example in lattice field theory. Lattice field theory isn’t strictly local,
because e.g. neighboring sites can interact. But far away ones don’t, or do only through nearby
things.

Set A = Ŝym(Chains•(R) ⊗ X) and A = Ŝym(X), and give AJ~K the differential ∂ coming
from an hBD structure. Modulo ~, this is just ∂dR, and so H•(A) = A. Indeed, we have
inclusion maps for each bump function, and a canonical projection (integration of chains). Now
turn on the differential: by the HPL, at least if X is concentrated in degree 0, we still have
H•(AJ~K, ∂) ∼= AJ~K. Remember, the map p̃ : AJ~K → AJ~K deforming the projection map is a
type of “expectation value.”

Now, let’s take two observables f1 and f2 ∈ A. Place one at z1 and one at z2 ∈ R, with z1 < z2.
Multiply them in AJ~K — this is not a chain map, since ∂ is not a differential — and then apply
p̃ to get back to A. This is the two point function.

Lemma: Modulo large powers of X and ~, the two-point function is independent of z1 and
z2 provided z2 � z1. Proof: Modulo large powers of X and ~, only finitely many corollas
participate in ∂. These corollas all together are supported in some finite-radius neighborhood of
a diagonal. So the failure of ∂ to be a derivation is supported only when z1 and z2 are near each
other. HPL implies that if you vary z2 in the absence of z1, then you get a homologous inclusion
map. In the presence of z1, it’s still homologous, exactly because ∂ is acting like a derivation.
And the two-point function begins and ends with AJ~K, which is concentrated in degree 0, and
so homologous things are equal.

Theorem: The two-point function defines an associative multiplication on AJ~K. Proof: Draw
a picture. The point is that the “spacetime” R is precisely the string along which beads in an
associative algebra are strung.

So this leads us back to abstract nonsense of properads, with the following question:

Question: Can you give V ⊗W the structure of a formal hBD manifold by putting structures
on V and W separately? Can such structures be put on Chains•(M)?

Answer: Yes. I will ignore various issues of finite-dimensionality, augmentations, and the like,
and give the gist of it.

Let P be a genus-graded properad, and let P (N,M, β) denote the chain complex of all operations
with N inputs, M outputs, and total genus β. Its bar dual DP is a quasifree properad, defined
as follows. The generators with N inputs and M outputs and internal genus β is the complex
P (N,M, β)∗[−1], the dual complex shifted down by 1 in homological degree. The differential
encodes the binary composition in P . In particular, consider all graphs with two vertices.
Each one defines a map P ⊗ P → P . Sum over all of them (best is to weight by number of
automorphisms) to get another map P ⊗ P → P . The dual is a map P ∗ → P ∗ ⊗ P ∗, and you
can shift the homological degrees to get a degree-(−1) map P ∗[−1]→ P ∗[−1]⊗P ∗[−1]. This is
the differential on generators of DP .
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I’ll give examples in a moment, but first, the answer to the question. For any (. . . ) genus-graded
properad P , the map taking the corolla with N inputs, M outputs, and internal genus β to the
canonical element in P ⊗P ∗[−1] ⊆ P ⊗DP ∗[−1] is a homomorphism. In particular, if V has an
action by P , and W has an action by DP , then V ⊗W has an hBD structure.

Example: An open and coopen commutative frobenius algebra is a vector space V which is
a non-unital commutative algebra and a non-counital cocommutative algebra, satisfying the
following identity:

=

Here is the multiplication and is the comultiplication. These generate a properad Frob
satisfying Frob(N,M, β) = K (the ground ring of characteristic 0) unless N or M = 0, in which
case the complex is 0.

The dual is DFrob = hBD itself. Exercise.

Example: The properad invFrobd controlling d-shifted involutive open and coopen commutative
frobenius algebras is similar. It has generators

= ,︸ ︷︷ ︸
homological degree 0

= (−1)d︸ ︷︷ ︸
homological degree −d

and relations

= = , (−1)d = = ,

= = = = ,

= 0

Thus it satisfies invFrobd(N,M, β) = 0 if β ≥ 1, or if N or M = 0. If N,M ≥ 1, then
invFrobd(N,M, 0) = −d(N − 1).

The dual is D invFrobd = hPoisd. Exercise.

There is always an acyclic fibration DDP → P , meaning that DDP is always a cofibrant replace-
ment of P . Remember that cofibrant things are easier to act, and in particular play better with
homotopical settings. A homotopy action of P is an action of DDP , or equivalently of any other
cofibrant replacement.

Suppose that there was a homotopy action of invFrob1 — quasilocally — on Chains•(R). This
isn’t much to ask. For topological space M , H•(M) is a cocommutative coalgebra, and H•(M)
is a commutative algebra. When M is an oriented d-dimensional manifold, we can embed
Chains• ↪→ Cochainsd−•, and there are various (co)actions, and in homology there’s a Frobenius-
type axiom. Also, the involutivity is automatic for odd d. (For closed manifolds, it measures
the Euler characteristic.) So I expected Chains•(R) to have a canonical homotopy invFrob1

action.
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Anyway, suppose it did. Then we’d automatically get a hBD structure on Chains•(R) ⊗ X
whenever X is a hPois1 formal manifold, and in particular whenever X is the linear functions
for a coordinate chart on an honest Poisson manifold. This would give a canonical universal
deformation quantization! Unfortunately, these don’t exist.

More generally, for those of you who know what this means... and Ed algebra is related to Rd
the way associative algebras are related to R. In particular:

Theorem: Any quasilocal hBD structure on the formal manifold Chains•(Rd)⊗X determines

an Ed algebra structure on Ŝym(X)J~K. The principal symbols of determine a hPoisd struc-
ture.

Corollary: Any quasilocal homotopy invFrobd action on Chains•(Rd) gives a universal quan-
tization procedure for Ed. Because of known (hard!) calculations of H•(Ed), this is equivalent
to the formality of the Ed operad. Conjecture: The space of quasilocal homotopy invFrobd
actions on Chains•(Rd) is canonically equivalent to the space of formality morphisms of Ed.
Note that this space is known to be non-empty, by deep work of Kontsevich.

Back to dimension 1, it turns out that there is an obstruction to putting a quasilocal homotopy
invFrob1 action on Chains•(R). But you almost can:

You know what a Lie bialgebra is? It’s a Lie algebra, and a co Lie algebra, and a relation. I
want a degree-shifted version:

Definition: The properad LB1 is generated by a degree-0 bracket satisfying the Jacobi

identity, and a degree-(−1) cobracket satisfying a signed coJacobi identity, and these together
satisfy:

= + + +

Theorem: There are cofibrant replacements DLB1 → invFrob1 and hPois1 = D invFrob1 →
LB1. Proof: Say a bunch of magic words about “Koszul duality.”

Definition: I call by surinvolutivity (a souped-up version of involutivity) the relation = 0.

Modding out LB1 by the ideal generated by this relation gives the properad surinvLB1.

Theorem: D surinvLB1 does act quasilocally on Chains•(R).

Corollary: The cofibrant replacement DD surinvLB1 is a quotient of DDLB1, which is quasiiso-
morphic to hPois1. Thus a surinvolutive Poisson formal manifold is a Poisson formal manifold
whose DDLB1 action restricts to DD surinvLB1. There is a canonical (wheel free!) deforma-
tion quantization of surinvolutive Poisson formal manifolds. By “wheel free” I mean that the
manifold can be infinite-dimensional — Kontsevich’s universal quantization of arbitrary Poisson
formal manifolds requires traces.

Closing question: Have you seen this relation on a Lie bialgebra before? What’s a better
name than “surinvolutive”?
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