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The primary reference for all things graded- and Q-manifold related is the 2006 PhD thesis by Rajan
Mehta. Most of this material is (after Raj’s thesis) well-known; the description of Faddeed-Popov
construction for Lie algebroids is joint work with Dan Berwick-Evans.

“BRST” stand respectively for Becchi, Rouet, and Stora, who published some joint papers in the
US explaining why FP’s construction (which was originally geometrically motivated) gives results
that don’t depend on choices, and basically introduced cohomological arguments to physics; and
Tyutin, who came up with the same results but was stuck behind the Iron Curtain.

1 Definition of Q-manifold

Suppose I have a space X with a group action G y X. Recall the GIT quotient: [X/G] =
spec(homG(1,C∞(X))). Here 1 denotes the trivial G-module, so that homG(1,−) is the functor
of invariants. [X/G] is (more or less) the coarse quotient or space quotient of X; its points are the
orbits of the G-action on X, or rather the closures thereof.

Since we are in the 21st century, we know that more detailed information is available: you could
take the derived functor of invariants. Note that RhomG(1,C∞(X)) (the chain complex that com-
putes Tor•G(1,C∞(X))) is defined only up to homotopy, and is a “strongly-homotopy commutative
algebra.” Let’s pretend that it is actually a commutative dga — I don’t want to think to hard
about “E∞ ring spectra” or whatever is now in vogue. Then “spec” of commtuative dgas isn’t too
bad, and I’d call

X//G
def
= spec(RhomG(1,C∞(X))).
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One place it is likely to be an actual (and not-too-large) commutative (dg) algebra is if the “group”
acting on X is actually a Lie algebra.

Remark: Rhom doesn’t record much about finite group actions, because we are in characteristic-
zero. So let’s just work with infinitesimal actions. ♦

Example: If g is a Lie algebra, what is {pt}//g? Well, what is Rhom(1, 1)? We resolve:

· · · → Ug⊗ g∧2 → Ug⊗ g→ Ug→ 1

Then we take homg from this to the trivial module. Well, homg from a free module is the space of
linear maps from the generating vector space. So we see that

Rhomg(1, 1) = homK(
∧•g, 1) with some differential

def
= CE•(g).

More generally, for any g-module M , Rhomg(1,M)
def
= CE•(g;M) =

∧•(g∗)⊗M as a graded vector
space. (The differential is “twisted” and not the tensor-product differential, and encodes the adjoint
action of g on itself and the action of g on M .) Anyway, this is true if dim g < M , which for now
we assume is true.

So as an algebra, Rhom(1, 1) =
∧•(g∗). Then {pt}//g = spec(

∧•(g∗)) = πg, but it has some extra
structure (the differential). ♦

More generally, X//g = spec(C∞(X)⊗CE∗(g)) = X × πg, except it has more structure than this.
The Z-grading records the rescaling action on (R,×) on πg.

Notation: I will write π(vector bundle) when I want you to think of the Z-grading as in the above
example. I will write π−1 for the other-direction shift. So π = π−1 as supermanifolds, but they
have different inherent R-actions.

Example: There are other times when you have a good notion of “invariant function.” For exam-
ple, if X comes equipped with an integrable (smooth, constant rank) distribution D ⊆ TX, then
the GIT quotient [X/D] is spec(D-invariant functions on X). We can define X//D by doing the
derived thing.

Then X//D = πD with: Z-grading as a vector bundle, and some differential.

For example, X//TX = spec(Ω•X), with the differential = the de Rham d. This might be a good
definition of de Rham complex. ♦

Notation: X//TX
def
= XdR.

Remark: There is a common generalization of these two examples (distributions, Lie algebra
actions), called Lie algebroid. It is a (classical) vector bundle A→ X and some structure that you
can look up encoding the idea that “A acts infinitesimally on X”. Then X//A = πA with some
differential. ♦

These are all (spec of) dgas, which is to say the differential is a derivation, which you should
think of as a vector field. The Z-grading is also a derivation f 7→ nf if f is homogeneous with
|f | = n ∈ Z.
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Definition: A Q-manifold is a supermanifold with:

• a Z-grading, i.e. a (bosonic) vector field n (the “ghost number operator”)

• a “Q-structure”, i.e. a fermionic vector field Q such that:

[Q,Q] = 0 non-trivial for fermionic vector fields

[n, Q] = +1 ·Q cohomological grading

(Actually, homological grading is more geometric, but cohomological grading is too entrenched.) As
I will not need more generality, I will ask that n agrees mod 2 with the fermion count. It’s usually
requested also that the manifold have local charts with all coordinates homogeneous for n.

What is a morphism of Q-manifolds? The algebraic answer: a morphism of dgas in the other
direction. The geometric answer is better. Just think classically. If Ξ,Υ are manifolds with vector
fields vΞ,vΥ (let’s call a manifold equipped with a vector field a V-manifold), then any smooth
map f : Ξ → Υ determines: pulled-back vector bundle f∗TR → S; map df : TR → f∗TS of
vector bundles over R. Then f is a V-morphism if df · vΞ = f∗vΥ, i.e. if df · vξ = vf(ξ) for each
ξ ∈ Ξ.

We can now construct the inner hom of V-manifolds. If Ξ,Υ are V-manifolds, then first build
Maps(Ξ,Υ), the (infinite-dimensional) manifold of all smooth maps Ξ→ Υ. Note that f∗vΥ−df ·vΞ

measures the failure of a smooth map to be a V-map. Note also that the global points (i.e. morphisms
from {pt}) of a V-manifold (Ξ,vΞ) are precisely the vanishing locus of vΞ. So we want to give
Maps(Ξ,Υ) a vector field whose zeros are those f for which f∗vΥ − df · vΞ = 0. Well, a little
thought shows that if f : Ξ→ Υ is smooth, then Tf Maps(Ξ,Υ) = ΓΞ(f∗TΥ). So vΥ and vΞ each
define a tangent vector at f , and we can define on Maps(Ξ,Υ) the vector field whose value at f
is:

vMaps|f = f∗vΥ − df · vΞ

I.e. f∗vΥ − df · vΞ is a vector field, and is the vector field we want.

Remark: The sign is the same as in the inner hom of g-modules. ♦

Exercise: Show that this V-structure makes Maps(Ξ,Υ) into the inner hom in the category of
V-manifolds. I.e. prove the hom-tensor adjunction.

Similarly we get an inner hom in the category of Q-manifolds.

Exercise: You can, of course, forget Q and remember just the Z-grading n. Show that X 7→ XdR

is right-adjoint to this forgetful functor.

Exercise: Let ε denote the standard (odd) coordinate on π−1R. You can give π−1R a Q-structure
by setting Q = ∂

∂ε .

If X is a graded manifold, you can make it into a Q-manifold by setting Q = 0; I will abuse notation
and call the corresponding Q-manifold also by X. Show that

XdR = Maps(π−1R, X)
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(inner hom of Q-manifolds; natural in X)

Remark: XdR is not a Q-vector bundle, because XdR → X is not a Q-morphism. But πTX
is a vector bundle over X in the category of graded or super manifolds. A question I don’t
know the answer to: how natural is this vector bundle structure? I.e.: there is an addition map
+ : πTX ×X πTX → πTX. If this were natural in X, then since πT = Maps(π−1R,−) in graded
manifolds, we should have a map π−1R → π−1R ∪{pt} π

−1R. But this colimit doesn’t exist in
manifolds, and in “spaces” there is no such “diagonal” map. ♦

Definition: If (Ξ, Q) is a Q-manifold, the cohomology H•(Ξ) is the cohomology of the dga (C∞(Ξ), Q).
E.g. H•(XdR) = H•dR(X).

Definition: Some types of morphisms:

• f : Ξ→ Υ is a quasi-isomorphism if it is an iso on homology.

• f : Ξ↔ Υ : g are quasi-inverse if f ◦ g and g ◦ f are isos on homology.

Remark: Having a quasi-inverse is strictly stronger than being quasi-iso. E.g. ∅ → (π−1R, ∂∂ε).
In Quillen–Sullivan “rational homotopy theory,” it is requested that the dgas have no support in
negative cohomological degree. Then I think quasi-iso and quasi-invertible are the same, but I’m
not sure? ♦

Notation: In physics, Q is called the BRST operator. In math it is often called the cohomological
vector field. Why “Q”? It is the first letter of “cohomological.”

2 Towards a Q-manifold integration theory: the BRST trick

We’d like to compute “path” integrals. As a warm-up, we study finite-dimensional integrals. What
if the “space” of “paths” is a stack X/G (with some meaning of “stack”) for G a compact group and
X a space? Then the “physical observables” should be G-invariant functions on X, i.e. H0(X//G).
What is a good type of measure? If X has a G-invariant measure µX , we could integrate

∫
X f µX ,

where f = es for S some action. But the dimensions are wrong: we want something with scaling
dimension dimX − dimG. Anyway, we’re clearly overcounting: if G = Z/2, then Vol(X) =
2 Vol(X/G). So we should pick a Haar measure µG, and we expect

∫
X/G = 1

Vol(G)

∫
X . So a

“measure” on X/G is a kind of ratio: a measure on X divided by a measure on G.

Note that a Haar measure on G is the same data, when LieG = g, as an ad-invariant measure on g.
If we feel safe in ignoring the discrete data in G (π0, π1, . . . ) then we feel safe in modeling X/G as
the derived quotient X//g, which is a Q-manifold with underlying supermanifold X ×πg. You can
check that µX/µG transforms as a section of the Berezinian line over X × πg. But it is defective,
in two ways:

1. [n, µXµG ] = [n, µX ] 1
µG
− [n, µG]µX = (0 − dim g)µXµG , not 0. So integrals of cohomological-

degree-0 functions against this measure are identically 0. E.g. if X is oriented, then πTX has
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a canonical Berezinian measure, which is the “integrate top forms” measure. But we want to
integrate functions, not forms.

2. If s ∈ C∞(X) is g-invariant, then it does give a function on X//g = X×πg. But this function
has a huge critical locus (it is constant on g-orbits in X and on fibers of X//g → X — this
is a graded manifold map, not a Q-manifold map), and we normally want to study

∫
es by

stationary phase, etc.

I’ll explain how to solve 2. first. This is the BRST trick.

Suppose that we have a Q-manifold Υ with C∞(Υ) including functions of negative degree. Also,
we have:

• an action s, which is closed and in cohomological-degree 0 (equivalently, s : Υ → R is a
morphism of Q-manifolds) — we want to compute

∫
Υ exp(s).

• a Berezinian measure µ = µΥ in cohomological degree 0. We should demand some “Q-ness”
of the measure; the correct demand is that LQµΥ = 0, where Lv is the Lie derivative in the
v direction.

• some choice of f ∈ C∞(Υ) which is in cohomological degree −1.

Then consider, for t ∈ [0, 1],

d

dt

∫
Υ

exp(s+ tQ[f ])µ =

∫
Υ

d

dt
exp(s+ tQ[f ])µ

=

∫
Υ

exp(s+ tQ[f ])Q[f ]µ

=

∫
Υ
LQ
Ä
exp(s+ tQ[f ]) f µ

ä
= 0

by Stoke’s formula. The last line holds only if there is sufficient convergence to assure that the
“boundary” of Υ does not contribute to the integral.

It follows that: ∫
exp(s) =

∫
exp(s+Q[f ])

This is not too much of a surprise. The idea is that the “physical observables” should be just
H0(Υ), and not all closed functions — or at least that an integral should really only depend on the
cohomology class of the function.

The point is: even if s has a large critical locus, perhaps s+Q[f ] doesn’t.

So to sum up, the usual situation is that we have a Q-manifold Ξ and a function s : Ξ→ R (closed
of cohomological degree 0) with too large of a critical locus, and some data that really ought to
make a measure on X but gives something in the wrong cohomological degree, and we are looking
for: a Q-manifold Υ and
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• a quasi-isomorphism Υ
∼→ Ξ. Then we can pull back s ∈ C∞(Ξ) to a function over Υ,

and because the two manifolds are quasi-isomorphic we can hope that their coarse invariants
(integrals of functions, etc.) don’t change.

• Υ should have enough functions in cohomological degree −1 to be able to find something
cohomologous to f with a small enough critical locus. (Υ should not have so many functions
as to be unwieldy.)

• Υ should have a good choice of measure in degree 0.

3 The Faddeev-Popov construction

To build such an Υ, let us note that in most cases of physical interest the Q-manifold Ξ is a derived
quotient Ξ = X//A for some Lie algebroid A, i.e. Ξ = πA with some Q-structure. (More interesting
things can also happen. For example, there might be “symmetries among symmetries”, and then Ξ
will have coordinate functions also in cohomological-degree +2, etc.) In particular, there’s a map
Ξ→ X of graded manifolds. We will use this to build Υ.

Definition: Suppose that f : Y → X is a submersion of graded manifolds, Ξ is a Q-manifold, and
Ξ → X is a map of graded manifolds. The Q-pullback (aka “Lie algebroid pullback” or “double
pullback”) of Ξ along f is the pullback in Q-manifolds:

Υ Ξ

YdR XdR

p

f̃

πTf

(Recall that Ξ → X of graded manifolds induces Ξ → XdR of Q-manifolds.) The pullback exists
because if Y → X is a submersion of graded manifolds, then YdR → XdR is a submersion of
Q-manifolds.

Remark: Locally, we can write Y = X × F for some fiber F . Then locally YdR = XdR × FdR; so
locally Υ = Ξ× FdR. ♦

Theorem (—, DBE): If Y → X is a (graded) vector bundle, then Υ→ Ξ is quasi-invertible.

Remark: This result shouldn’t be too much of a surprise. You know that if Y → X is a vector
bundle, then YdR → XdR has quasi-inverse the zero section; the result says that this generalizes to
Q-pullbacks. The intuition is the local description of Υ = Ξ × FdR; if the fiber F of Y → X is a
vector space, then each fiber FdR of Υ→ Ξ is equivalent to {pt}.

The proof does not require addition, just that a vector space is “star-shaped” — it comes with
a distinguished homotopy to the origin. The proof is pretty much completely algebraic, and so
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applies in the infinite-dimensional case as well (provided infinite-dimensional Q-manifolds are made
precise). ♦

Now we can essentially solve the problem from the previous section. In the standard examples,
Ξ = X//A comes equipped with a Berezinian measure which seems to encode the correct data
but is in negative cohomological degree (it is non-zero on “top forms”). Suppose that the vector
bundle Y → X is “oriented” in the sense that each fiber is given an orientation, which is constant
as you move around X. Then each fiber FdR of Υ → Ξ receives its canonical “integrate top
forms” measure. By controlling the graded dimension of F , we can make the product measure on
Υ = Ξ× FdR have cohomological degree 0.

Definition (Faddeev-Popov complex): Let Ξ = X//A for A → X a Lie algebroid, so that
Ξ = πA as a graded manifold. Then to get the cohomological degrees to work out, it suffices to take
Y = π−1B where B → X is a classical vector bundle with the same rank as A→ X.

When A is finite-dimensional (and oriented), the Faddeev-Popov choice is B = A∗ the dual vector
bundle, so that Y = π−1A∗ = (πA)∗.

Remark: When A→ X is not oriented, then you should make some twists. Over R, this is easy.
Let X be a manifold, and L → X a line bundle. Then L⊗2 comes equipped with an orientation,
because all squares are positive, and so |L| =

√
L⊗2 is well-defined as the unique oriented line

bundle that squares to L⊗2. An orientation of L is a trivialization of the Z/2-bundle L/|L|. An
orientation of a vector bundle is an orientation of its top exterior power. If A is not oriented, then
the correct choice is to twist A∗ by A∧top/|A∧top|. ♦

Remark: Non-canonically (it amounts essentially to a choice of connection), we can write Υ =
(π−1A∗)dR×XdR

Ξ ∼= π−1A∗×X A∗×X πA. When A→ X is trivialized A = X×g for a Lie algebra
action, then there is the trivial connection, and Υ = X ×π−1g∗× g∗×πg. In physics, these factors
are sometimes called “fields”, “anti-ghosts”, “Lagrange multipliers”, and “ghosts”, respectively. ♦

Finally, how do we choose an exact function?

Definition (Faddeev-Popov gauge fixing): Suppose that A→ X is an oriented Lie algebroid,
and construct Υ as above, so that Υ presents X//A as a derived quotient. Choose f : X → A a
section of A → X. This choice amounts to a linear function on π−1A∗ which is in cohomological
degree −1. This function lifts to a (non-closed!) function on (π−1A∗)dR and hence to a function on
Υ; call this non-closed cohomological-degree-(−1) element of C∞(Υ) also by f . Given an “action”
s ∈ C∞(X) that is A-invariant, the Faddeev-Popov gauge-fixed action is s+Q[f ].

Exercise: Suppose the zero locus of f : X → A intersects the orbits of A y X transversely (and
is an embedded submanifold). Then after integrating out all the fibers of

∫
Υ exp(Q[f ])µ to get some

measure just on X, the resulting measure is of the form (δ-measure on the zero locus)×(det Jacobi).

Suppose that s ∈ C∞(X) is A-invariant, and that the critical locus of s consists of an isolated orbit
of the Ay X. Suppose that (at least near this critical orbit) the zero-locus of f : X → A intersects
the A-orbits transversely. Then the critical locus of the gauge-fixed action s + Q[f ] is an isolated
pt, namely the intersection of the critical orbit of s and the zero-locus of f .
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