

Lecture 1: Review of Set Theory

Definition:

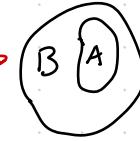
- For this course "naive set theory": a set is a collection of elements
- Two sets are the same when their elements are the same

Notation:

$a \in A$ → "element a is in A "

$A \subset B$ or $A \subseteq B$ → "every element of A is also an element of B "

$A \subsetneq B$ the sets are not equal



Some important sets

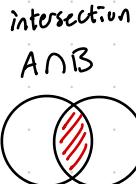
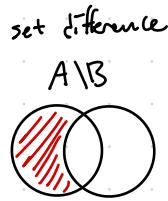
\mathbb{R} → real numbers \mathbb{Z} → integers \mathbb{Q} → quotients of integers (rational #'s)

\mathbb{N} → natural numbers = $\{0, 1, 2, \dots\}$

\emptyset → empty set (no elements) → the set s.t. $\forall a, a \notin \emptyset$

\mathbb{Z}^+ → strictly positive ($\mathbb{Z}_{>0}$) or $\mathbb{N}_{<7}$ → natural numbers less than 7

More on Sets



more generally given an indexed family of sets
e.g. a list A_0, A_1, A_2, \dots

$$\bigcup_{i=0}^{\infty} A_i \quad \bigcap_{i=0}^{\infty} A_i$$

$a \in \bigcap_{i=0}^{\infty} A_i \iff a \in A_i \text{ for every } i$

$a \in \bigcup_{i=0}^{\infty} A_i \iff a \in A_i \text{ for some } i$

Example: $A_i = \left(\frac{-1}{i+1}, \frac{1}{i+1} \right) \subset \mathbb{R}$

$$\bigcap_{i=0}^{\infty} \left(\frac{-1}{i+1}, \frac{1}{i+1} \right) = \{0\} \quad \text{or for union } \bigcup_{i=0}^{\infty} (-i, i) = \mathbb{R}$$

Functions

- Suppose $A; B$ are sets; the product $A \times B$ is a set of ordered pairs (a, b) s.t. $a \in A : b \in B$
Its all the possible pairs (a, b)

Define: A subset $\gamma \subset A \times B$ is a graph of a function if $\forall a \in A \exists! (a, b) \in \gamma$
Spelled out: given a , look at $\gamma_a := \{(a, b) \text{ s.t. } a = a\}$

γ is a function if γ_a has exactly one element $\forall a \in A$

"for every" "there exists"
"unique"

$f: A \rightarrow B$ if f is a function
 $f(a) \in B$ will be the second coordinate
of the unique element in γ_a

Definitions:

$f: A \rightarrow B$ → injective if $\forall b \in B$ there is at most one a s.t. $f(a) = b$

$f: A \rightarrow B$ → surjective if $\forall b \in B$ there is at least one a s.t. $f(a) = b$

A is the domain
 B is the codomain

	Injective	Not injective
Surjective		
Not surjective		

Function Composition:

$f: A \rightarrow B$: $g: B \rightarrow C$ \rightarrow composing the two we get $gf = g \circ f: A \rightarrow C$

In terms of graphs we write $gf \subset A \times C$
 $= \{(a, c) \mid \exists b \in B \text{ s.t. } (a, b) \in f \text{ and } (b, c) \in g\}$

$a \mapsto g(f(a))$
means a specific input "a" is taken to $g(f(a))$

The identity function

- For every set A $e_A: A \rightarrow A$ defined by δ_{e_A} is the diagonal in $A \times A \rightarrow \{(a, a) \mid a \in A\}$
if $f: A \rightarrow B$ $f \circ e_A = f$
 $e_B \circ f = f$
- If $f: A \rightarrow B$ is bijective the define inverse $f^{-1}: B \rightarrow A$ to be the function that sends $b \in B$ to the unique $a \in A$ s.t. $f(a) = b$
 $\delta_{f^{-1}}$ is the reflection of δ_f then $f^{-1} \circ f = e_A$; $f \circ f^{-1} = e_B$