

Lecture 11: Convergent Sequences

09. Feb. 2026

Recall: A sequence is a function $N \rightarrow \mathbb{R}$
 $n \mapsto x_n$

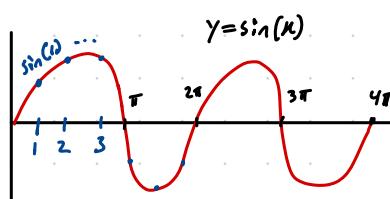
Observation about N : $0 < 1 < 2 < 3 \dots$ pick any infinite subset $S \subseteq N$; then there is a unique monotonic (increasing) bijection $N \rightarrow S$

→ Conversely any strictly monotonic function $N \rightarrow N$ has some image

→ Infinite subsets of $N \longleftrightarrow$ strictly monotonic functions $N \rightarrow N$

→ Given $i \mapsto n_i$ a monotonic function $N \rightarrow N$ and a sequence $n \mapsto x_n$, get a subsequence $i \mapsto x_{n_i}$

Example: $x_i \mapsto \sin(i)$



→ non-eg: $n \mapsto \sin\left(\frac{n}{2}\right)$ is not a subset of $n \mapsto \sin(n)$

→ $\sin(0), \sin(2), \sin(1), \sin(4), \sin(3), \sin(6), \sin(5), \dots$
not a subsequence because its out of order.

Theorem: Suppose $X: N \rightarrow \mathbb{R}$ is a convergent sequence and y is a subsequence. Then $\lim Y = \lim X$ (and in particular $\lim Y$ exists)

Proof: Write $x := \lim X$. The assumption that $X \rightarrow x$ means $\forall \varepsilon > 0, \exists K$ s.t. $\forall n > K, |x_n - x| < \varepsilon$
Suppose $Y_i = X_{n_i}$ (just to set notation)

→ Given ε , pick K as above (for x), set ℓ any number s.t. $n_\ell > K$

→ Then if $i > \ell$ then $n_i > n_\ell > K$ So $|Y_i - x| = |X_{n_i} - x| < \varepsilon$; why does such ℓ exist? b/c my subsequence is indexed by an infinite set and only finitely many n_i 's will be less than x .

Corollary: Suppose X is a sequence s.t. exists subsequences Y, Z with $\lim Y \neq \lim Z$ then X diverges

Example: $x_n = (-1)^n + \frac{1}{2^n}$

$n=0$	$x=2$	→ look at the subseq of even entries
$n=1$	$x=-\frac{1}{2}$	$x_{2n} = 1 + \frac{1}{2^n} \rightarrow 1+0=1$
$n=2$	$x=\frac{5}{4}$	
$n=3$	$x=-\frac{7}{8}$	$x_{2n+1} = -1 + \frac{1}{2^n} \rightarrow -1+0=-1$

Converse of the definition of limit

TFAE:

- X does not converge to x $X_n \not\rightarrow x$
- $\exists \varepsilon > 0$ there are infinitely many n s.t. $|x_n - x| > \varepsilon$
- $\exists \varepsilon$ s.t. \exists subsequence of X , call it Y s.t. $|Y_i - x| > \varepsilon \ \forall i$

Theorem: Every sequence admits a ^{weakly} monotonic subsequence.

Proof: Try to build an increasing subsequence in the most naive way:

→ Start w/ x_0 , then pick the next entry above x_0 , then the earliest entry above that and so on.

→ If this succeeds, great.

→ If this naive attempt fails, I must have hit a value of my sequence which is bigger than all its future.

Definition: A peak of X is an x_n st. $\forall m > n \quad x_n > x_m$

→ if only finitely many peaks, just start a naive attempt after the last peak.

→ if there are infinitely many peaks, the the subsequence of peaks is monotonic-decreasing.

Corollary: Every bounded sequence has a convergent seq.

■