

Lecture 12: Convergent Sequences Cont.

11-Feb-2026

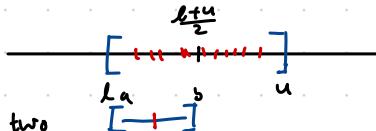
Bolzano-Weierstrass Theorem: every bounded sequence (in \mathbb{R}) contains a convergent subsequence.

Proof 1: we already proved that every sequence contains a monotonic subsequence. Any subsequence of a bounded sequence is bounded.

→ And so: any bounded sequence contains a bounded monotone subsequence.

→ We already proved that bounded monotone sequences converge. ■

Proof 2: Let (x_n) be a sequence bounded in $[l, u]$



→ $\because [l, u] = [l, \frac{l+u}{2}] \cup [\frac{l+u}{2}, u]$ at least one of these two

halves contains a subseq of (x_n)

→ say $[a, b]$ does (either $a, b = l, \frac{l+u}{2}$ or $= \frac{l+u}{2}, u$)

→ By exactly same argument, at least one of $[a, \frac{a+b}{2}]$ or $[\frac{a+b}{2}, b]$ contains infinitely many entries in my sequence.

→ divide again, pick a half containing as many seq. points

⋮

→ we get a nested sequence of intervals

→ Build a new sequence of the left endpoints of these intervals (l_n) $l_0 = l$

$l_n = \text{either } l \text{ or } \frac{l+u}{2}$

→ l_n is monotonic increasing and bounded above by u .

(the collection of left endpoints is bounded so it has a supremum).

→ The collection of right endpoints is bounded so it has an infimum)

for each n , $l_n \leq \sup(\text{set of left endpoints})$

$\inf(\text{set of } l_n) \leq l_n$ because every u_n is bigger than every l_n

$$|u_n - l_n| = \frac{u - l}{2^n} \quad \text{so } 0 \leq |\inf(\text{right endpoints}) - \sup(\text{left endpoints})| \leq \frac{u - l}{2^n} \text{ for every } n$$

→ let $x := \sup(\text{left endpoints}) = \inf(\text{right endpoints})$ Goal: build a subseq of (x_n) converging to this x

say (x_{n_i})

→ Know that the i^{th} interval $[l_i, u_i]$ contains ∞ entries from seq (x_n)

so I can definitely pick one " x_{n_i} " and pick it so that $n_i > n_{i-1}$.

I find a subseq $x_{n_i} \subseteq K_n$ s.t. $l_i \leq x_{n_i} \leq u_i$ → Claim: this sequence converges to x

→ have seq (l_i) of left endpoints

(u_i) of right endpoints $x_n \geq (x_{n_i}) = (y_i)$

Know: $l_i \leq y_i \leq u_i$

$\lim l_i = \lim u_i = x$

Squeeze

Lemma: if I'm given three sequences $(l_i), (y_i), (u_i)$ s.t. $l_i \leq y_i \leq u_i$ for every i

and $\lim l_i = \lim u_i = x$ then $\lim y_i = x$

Proof: Given $\epsilon > 0$ $\because \lim l_i = x$ I know $\exists N$ s.t. $|l_i - x| < \epsilon \quad \forall i > N$ and $\because \lim u_i = x \quad \exists M$ s.t. $|u_i - x| < \epsilon \quad \forall i > M$; let $i > \max(N, M)$

• if $y_i \leq x$ then $l_i \leq y_i \leq x$ but $|l_i - x| < \epsilon$ so $|y_i - x| < \epsilon$

WTS: $|y_i - x| < \epsilon$

• if $y_i \geq x$ then $u_i \geq y_i \geq x$ but $|u_i - x| < \epsilon$ so $|y_i - x| < \epsilon$

- Given a sequence (x_0, x_1, x_2, \dots)
- Saying " x is a limit of the above sequence" if $\forall \epsilon > 0$ the sequence enters $(x-\epsilon, x+\epsilon)$ and never leaves; this also means there are only finitely many sequence entries not in $(x-\epsilon, x+\epsilon)$
- x is an accumulation point of (x_0, x_1, x_2, \dots) if $\forall \epsilon > 0$ infinitely many sequence entries are in $(x-\epsilon, x+\epsilon)$. If x is a limit then it is an accumulation point, but not conversely. A seq has at most one limit but a seq can have many acc. pts.

These ways of writing the definition are independent of how you order a sequence.

Theorem: x is an accumulation point of $(x_0, x_1, x_2, \dots) \iff x$ is the limit of some subseq of (x_n) .

Theorem: Any bounded sequence has an accumulation point.

Example: \mathbb{Q} is countable in particular can find $N \rightarrow \mathbb{Q}$ i.e. \exists seq that hits every rational number

Every real number is an accumulation point of this seq.