

Lecture 13: Finishing up Sequences

13. Feb. 2026

Last time: A sequence can have many accumulation points i.e. subsequential limits.

→ If X is a sequence, x is a acc. pt. if $\exists \varepsilon > 0$, there are infinitely many n s.t. $X_n \in (x-\varepsilon, x+\varepsilon)$

Theorem: These are the same

Proof (strat): For each n , X enters $(x-\frac{1}{n}, x+\frac{1}{n})$ infinitely often so build $y \subseteq X$ s.t. $\lim y = x$

Example: Since \mathbb{Q} is countable there exists a sequence that hits every rational #.

if $r \in \mathbb{R}$ is any real number then $\forall \varepsilon, (r-\varepsilon, r+\varepsilon) \cap \mathbb{Q}$ is infinite

Lemma: if $a < b$ in \mathbb{R} , then $(a, b) \cap \mathbb{Q}$ is infinite

→ Define $b-a=w>0$ pick $N \in \mathbb{N}$ s.t. $N > \frac{1}{w}$

→ So (Na, Nb) has width > 1 so contains an integer M

→ So $\frac{M}{N} \in (a, b)$ Now subdivide and repeat

so r is an acc. pt. of X
 r was arbitrary

Let X be a bounded set. $\sup(X)$ might or might not be an acc. pt.

Example:

$X = 0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$ → then $\sup(X) = 1 = \lim(X)$

$X = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$ → then $\sup(X) = 1$ but only acc. pt. is $\lim X = 0$

Remark: Bolzano-Weierstrass says that a bounded seq. has at least one acc. pt. but maybe many.

• For bounded sequences, TFAE:

→ Seq. converges (limit exists)

→ \exists ! acc. pt.

Suppose given a bounded sequence $X = (x_0, x_1, x_2, \dots)$; define a new sequence whose n th term is

$$s_n = \sup\{x_n, x_{n+1}, x_{n+2}, \dots\} = \sup\{x_m\} \quad m \geq n$$

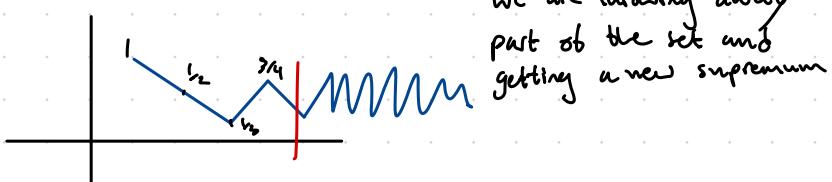
$$\frac{(-1)^n + 1}{2} - (-1)^n \frac{1}{n} \rightarrow n \text{ even: } 1 - \frac{1}{n} \\ n \text{ odd: } 0 + \frac{1}{n}$$

$$s_{n+1} \leq s_n$$

$$s_n \geq s_{n+1} \geq s_{n+2} \geq \dots \geq \inf(X)$$

→ is a decreasing and bounded sequence and so converges

$$\lim_{n \rightarrow \infty} \sup\{x_n, x_{n+1}, x_{n+2}, \dots\} = \limsup(X)$$



Theorem: Let X be a bounded sequence

i) $\limsup(X)$ is an acc. pt. of X

ii) $\limsup(X) = \sup(\text{acc. pts. of } X)$

! This tells you that for any sequence X , the set of acc. pts. of X has the property that it contains its own sup.

Ex.: So $\nexists X$ s.t. $\{\text{acc. pts. of } X\}$ is $(0, 1)$

Proof: i) let $l = \limsup(X)$; by definition, $\forall \varepsilon$,

$\exists n$ s.t. $l \leq s_n < l + \varepsilon$ thus $\exists N > n$ s.t.

$s_n > x_N > s_n - \varepsilon \rightarrow$ so $l + \varepsilon > x_N > l - \varepsilon$, so these x_N 's are a subseq. converging to l .

ii) Sufficient to show if y is any accumulation point then $y \leq \limsup(X)$
 (Given i)) for this suffice to observe that if $y \leq X$ then $\limsup y \leq \limsup X$ if X converges then $\limsup = \lim$

Corollary: for a bounded seq X TFAE:

- i) $\lim X$ exists in which case
- ii) $\limsup X = \liminf X = \lim X$

Proof: if $\lim X$ exists then it is the only accum. pt. of X so (i) \Rightarrow (ii)
 → for any bounded X , acc. pts. $(X) \subseteq [\liminf X, \limsup X]$
 → So if $\liminf = \limsup = l$ then accum. pts. $\subseteq \{l\}$
 → So $\exists!$ accum. pt. So (ii) \Rightarrow (i)

Definition: A sequence $X = (x_0, x_1, \dots)$ is Cauchy if $\forall \varepsilon \exists N$ s.t. $\forall m, n \geq N$ $|x_m - x_n| < \varepsilon$

Lemma: If $\lim X$ exists, then X is Cauchy.

Proof: since $\lim X$ exists, $\forall \varepsilon, \exists N$ s.t. $\forall n \geq N$ $|x_n - \lim X| < \frac{\varepsilon}{2}$ so Δ ineq $\Rightarrow |x_n - x_m| < \varepsilon$ if $n, m \geq N$

Theorem: if X is Cauchy then X converges.

Proof strat: show that Cauchy $\Rightarrow \limsup = \liminf$ idea: use cauchy condition to show that $\forall \varepsilon, |\limsup - \liminf| < \varepsilon$

Application: A seq x_0 is called contractive if $\exists 0 < c < 1$ s.t. $|x_{n+1} - x_n| \leq c |x_n - x_{n-1}|$

Lemma: contractive sequences converge

Proof: suppose $m \geq n$ then from Δ inequality $|x_m - x_n| \leq \sum_{k=1}^{m-n} |x_{n+k} - x_{n+k-1}| \leq \sum_{k=1}^{m-n} c^k |x_{n+1} - x_n|$
 $\leq \sum_{k=1}^{\infty} c^k |x_{n+1} - x_n| = \frac{1}{1-c} |x_{n+1} - x_n| \leq C |x_1 - x_0|$ *

→ Given ε find N s.t

$$\frac{C^N}{1-c} |x_1 - x_0| < \varepsilon \text{ can do this b/c since } c < 1 \quad C^N \frac{|x_1 - x_0|}{1-c} \rightarrow 0 \text{ as } N \rightarrow \infty$$

for this N * shows that X is Cauchy hence convergent.