

Lecture 2: Set Theory Cont.

04 Jan 2026

Some features of the natural numbers $N = \{0, 1, 2, 3, \dots\}$

- 1). contains zero ($0 \in N$)
- 2). if $x \in N$ then $x+1 \in N$ also
- 3). N is the minimal set satisfying 1). & 2). \rightarrow if X is a set enjoying 1). & 2). then $X \supseteq N$

An aside

→ Can model N in the language of set theory.

↳ So let's model 0 as the empty set \emptyset $0 \rightsquigarrow \emptyset = \{\}$

↳ Can also model 1 as the all the elements we already have 1 $\rightsquigarrow \{\emptyset\}$

↳ or 2 $\rightsquigarrow \{\emptyset, \{\emptyset\}\}$ 3 $\rightsquigarrow \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$ → it's like thinking of numbers as the
we can then say $n+1 \rightsquigarrow \{\text{all actors} \leq n\}$ # of elements n in the set
Just a place holder

- 3). let $\phi(_)$ be a property that any given number might or might not have.
thus $\phi(n) \rightarrow "n \text{ has property } \phi"$

Example: $\phi = \text{"is even"}$ Suppose $\phi(0)$ is true and suppose $\phi(n) \Rightarrow \phi(n+1)$
then $\phi(n)$ is true for every $n \in N$

Proof: consider $\Phi = \{n \in N \text{ s.t. } \phi(n)\}$ $\Phi \subseteq N \Rightarrow \Phi$ satisfies 3) $\Rightarrow \Phi \supseteq N \therefore \Phi = N$
well ordering principle

- 4). Suppose $X \subseteq N$ and $X \neq \emptyset$ then X has a smallest element

Method of infinite descent

Theorem: Suppose $\phi(_)$ is a property s.t. if $\phi(n)$ is false (i.e. a counterexample) then $\exists y < n$ s.t.
 $\phi(y)$ is false (note $x, y \in N$) then $\phi(n)$ is true $\forall n \in N$

Proof: $\Phi' = \{n \in N \text{ s.t. } \neg \phi(n)\} \subseteq N$ does not have a smallest element so must be \emptyset by well ordered principle (WOP)

$$\emptyset = \{0, 1, 2, \dots, n-1\}$$

→ Given $n \in N$ consider the set $N_{\leq n} \subseteq N \rightarrow$ the idea is that this set has exactly n elements

→ Recall from last time $f: X \rightarrow Y$ is bijective if $\forall y \in Y \exists! x \in X$ s.t. $f(x) = y$ AND that any
bijection has an inverse defined by $f^{-1}(y) = x$ (unique x)

Lemma: if f is invertible then it is bijective.

$$f \circ f^{-1} = \text{id}_Y \quad f^{-1} \circ f = \text{id}_X$$

proof:

→ if $f: X \rightarrow Y$: $g: Y \rightarrow Z$ are bijective then $g \circ f: X \rightarrow Z$ is a bijection $(gf) \circ (f^{-1}g^{-1}) = \text{id}_Z$

$$(f^{-1}g^{-1}) \circ (gf) = \text{id}_X$$

→ Consider the collection of all sets define symbol $X \cong Y$ to mean
 \exists bijection $X \rightarrow Y$

$$f^{-1}g^{-1}gf = f^{-1}f$$

Definition: X is finite if $\exists n$ s.t. $X \cong N_n$ else it is infinite. → X is countable if it is
finite and $\cong N$ $|X| < \infty$

Property: if $|X| < \infty$ then there is exactly one $n \in \mathbb{N}$ s.t. $X \cong \mathbb{N}_{\leq n}$ in this case write $|X| = n$

→ In other words, we want to rule out the possibility that $X \cong \mathbb{N}_{\leq n}$ and $X \cong \mathbb{N}_{\leq m}$ and that $m \neq n$

→ Suffices to show that if $\mathbb{N}_m \cong \mathbb{N}_m$ then $n = m$ → We'll prove a theorem that will imply this

Theorem: (Pigeonhole principle)

Suppose $m > n$ $m, n \in \mathbb{N}$ then any $f: \mathbb{N}_m \rightarrow \mathbb{N}_n$ is not injective

equiv: if \exists injective map $\mathbb{N}_m \rightarrow \mathbb{N}_n$ then $m \leq n$

Proof: induction in n base case: $n = 0$ then $\mathbb{N}_0 = \emptyset$ if $\exists f: X \rightarrow \emptyset$ then $X = \emptyset$ and if $m > 0$ then $\mathbb{N}_m \neq \emptyset$ because it contained $m-1$.

TBC