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Why fermions?

Consider a quantum system with various species of (quasi)particles:
quarks and leptons, phonons and Cooper pairs, . . . .

Question: Can you consistently model each species by a vector
space of “internal states”? Requirements:

I Superposition of particles ! ⊕ of vector space.

I Fusion of particles ! ⊗ of vector spaces.

I Exchanging particles ! natural iso : V ⊗W ∼= W ⊗ V .

In other words: Does there necessarily exist a symmetric monoidal
functor from the category of particle configurations to Vec?

Warning: In (≤2+1)D, particles can have nonsymmetric braiding statistics.

Particle braiding is symmetric in (≥3+1)D.
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Why fermions?

Question: Does there necessarily exist a symmetric monoidal
functor from the category of particle configurations to Vec?

Answer: No. For any vector space, the exchange isomorphism
: V ⊗ V ∼= V ⊗ V has positive trace: it interferes constructively

with the identity isomorphism. On the other hand, for physical
protons or electrons, exchanging two identical particles interferes
destructively with leaving them in place.

Cheap fix (Grassmann, Dirac, Fermi): Formally declare a new
type of vector — a supervector — which comes in two parts. The
even part satisfies the usual exchange statistics, but the odd part
picks up an extra −1 under self-exchanges.

In other words, you use the category sVec, which is almost the
same as the category of Z/2Z-graded vector spaces, except you
add a −1 to the commutator.

2 / 18



Why fermions?

Cheap fix (Grassmann, Dirac, Fermi): Formally declare a new
type of vector — a supervector — which comes in two parts. The
even part satisfies the usual exchange statistics, but the odd part
picks up an extra −1 under exchanges.

Theorem (Doplicher–Roberts, Deligne): This cheap fix suffices!
If A is any symmetric monoidal C-linear category which is nonzero
and not too large, then there exists a symmetric monoidal C-linear
functor A → sVecC.

Details: For both Doplicher–Roberts and Deligne, not too large includes rigid:

every object in A should have a dual object (e.g. dual of a finite-dimensional

vector space). For Doplicher–Roberts, not too large = rigid + C*. For Deligne,

not too large = rigid + finite-dimensional hom spaces + abelian + finite-length

Jordan-Holder decompositions + length(X⊗n) ≤ Cn.
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Why imaginary numbers?

Consider a quantum system with various local integrals of motion:
local operators whose value is locally constant as a function of
their location in spacetime.

Question: Can you consistently model each integral of motion by
a numerical “value”? Requirements:

I Superposition of operators ! + of numbers.

I Fusion of operators ! × of numbers.

In other words: Does there necessarily exist a homomorphism
from the commutative ring of integrals of motion to R?

Warning: In (≤0+1)D, integrals of motion can have noncommutative operator

products. Operator product is commutative in (≥1+1)D.
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Why imaginary numbers?

Question: Does there necessarily exist a homomorphism from the
commutative ring of integrals of motion to R?

Answer: No. The square of any real number is positive. But
systems with spontaneously broken time-reversal symmetry have
(real) integrals of motion that square to −1.

Cheap fix (Cardano): Formally declare a new type of number —
a complex number — which comes in two parts. The real part
satisfies the usual multiplication law, but the imaginary part picks
up an extra −1 under self-multiplications.

In other words, you use the ring C, which is almost the same as
the ring of Z/2Z-graded real numbers, except you add a −1 to the
multiplication law.
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Why imaginary numbers?

Cheap fix (Cardano): Formally declare a new type of number —
a complex number — which comes in two parts. The real part
satisfies the usual multiplication law, but the imaginary part picks
up an extra −1 under self-multiplications.

Theorem (Gauss, Hilbert, Gelfand): This cheap fix suffices! If A
is any commutative R-algebra which is nonzero and not too large,
then there exists a commutative R-algebra homomorphism A→ C.

Details: For Gauss, not too large = singly-generated. For Hilbert, not too

large = finitely-generated. For Gelfand, not too large = C*.

Punchline: VecC  sVecC is an algebraic closure!

R alg. clos.
 C modules

 VecC
alg. clos.
 sVecC  . . .
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Going deeper

R alg. clos.
 C modules

 VecC
alg. clos.
 sVecC  . . .

n-categories organize n-(spacetime-)dimensional objects in
quantum systems: strings, defects, interfaces, branes, . . . .

Question: What kind of statistics will we need to introduce to
realize all possible n-dimensional objects? What is the algebraically
closed n-category? Does it even exist?

Strategy: Set W0 := C, W1 := sVecC, Wn := algebraic closure
of Mod(Wn−1). Build these inductively.

Vocabulary advocacy: Higher algebra has come to mean the algebra of

homotopy types, spectra, (∞, 1)-categories. VecC has C at the top: sym mon

n-categories feel like cohomological objects. So I advocate the term deeper

algebra for the algebra of (∞,∞)-categories.
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Deeper roots of unity

Lemma: If K is an algebraically closed field of characteristic zero,
then its roots of unity µ(K) := torsion subgroup of K× is
isomorphic to Q/Z. If K has characteristic p, then µ(K) ∼= Qp/Zp.
Proof: Pick a finite group A (of order coprime to p). Look at the
group algebra K[A]. There must be |A|-many maps K[A]→ K.
But hom(K[A],K) = hom(A,µ(K)). This forces µ(K) ∼= Q/Z.

Basically the same thing works in deeper categories, with some
vocabulary change:

abelian group spectrum

finite abelian group π-finite spectrum

A spectrum is basically a coherently homotopy-commutative
topological group. It is π-finite when the product of its homotopy
groups is finite.
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Deeper roots of unity

The spectrum analogue of Q/Z is called the Brown–Comenetz
dual to spheres denoted IQ/Z. Its homotopy groups:

πnIQ/Z =

{
0, n > 0

hom(πs|n|,Q/Z), n ≤ 0

πsm := lim−→
k→∞

πm+kS
k = stable homotopy groups of spheres.

Theorem (Brown–Comenetz): Consider the homotopy
1-category of the ∞-category of those spectra A equipped with a
map π0A→ Q/Z. This 1-category has a terminal object, IQ/Z.

Proof is nontrivial. Existence requires Q/Z is a divisible group.
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Deeper roots of unity

Lemma: If Wn is an algebraically closed symmetric monoidal
n-category of characteristic zero, then its roots of unity µ(Wn), i.e.
the torsion subspectrum of (Wn)×, is iso to InQ/Z := Ω∞ΣnIQ/Z.

Main Theorem (JF–Reutter): There is a unique sequence W•
with:

1. Wn is a rigid sym mon C-linear n-category with duals.

2. Wn is an ind. limit of finite separable extensions of Modn(C).

3. Wn−1 ∼= EndWn(1), i.e. W• is a categorical spectrum.

4. µ(Wn) ∼= InQ/Z.

Moreover, Wn is separably closed among sym mon n-categories.

Item 2 can probably be weakened: when n = 3, there are extensions that feel

inseparable but algebraic. Depending on the weakening, there are also

transcendental extensions. Ask me in private.
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Deeper Kummer extensions

Suppose a field K has µ(K) = Q/Z. It probably is not
algebraically closed. For example, it can still have noncyclotomic
abelian extensions.

Theorem (Kummer): Suppose µ(K) = Q/Z and A is a finite
abelian group with A∨ := hom(A,Q/Z). Then A-Galois extensions
of K are classified by Ext1(A∨,K×) = homSp(A∨, (VecK)×).

Proof: An A-Galois extension K→ L is in particular an
A-representation. If µ(K) = Q/Z, then every A-representation is
diagonalizable into one-dimensional eigenspaces. This
diagonalization writes L =

⊕
α∈A∨ Lα as an A∨-graded

commutative algebra. The assignment α 7→ Lα is a symmetric
monoidal functor A∨ → VecK, or equivalently a spectrum map
A∨ → (VecK)×.
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Deeper Kummer extensions

Theorem (Kummer): Suppose µ(K) = Q/Z and A is a finite
abelian group with A∨ := hom(A,Q/Z). Then A-Galois extensions
of K are classified by Ext1(A∨,K×) = homSp(A∨, (VecK)×).

Since A∨ is (π-)finite, any map to (VecK)× factors through its
torsion subgroup µ(VecK).

Punchline: Abelian extensions of K are controlled by the roots of
unity in VecK.

A field without abelian extensions is solvably closed. To form the
solvable closure, you keep adjoining abelian extensions until
µ(VecK) is as simple as possible.

Nonabelian simple groups are much harder. Fortunately they won’t arise for us.
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Deeper Kummer extensions

Using some long exact sequences, we showed:

Theorem (JF–Reutter): Suppose Wn−1 is algebraically closed, in
particular µ(Wn−1) = In−1Q/Z . Then Mod(Wn−1) has a universal
abelian extension: there is a universal abelian group Un such that

π0{A-graded extensions of Mod(Wn−1)} = homAbGp(A,Un).

Moreover, this universal Un-extension (classified by id : Un → Un)
is algebraically closed. It is Wn.

The dual group (Un)∨ = hom(Un,Q/Z), or rather some
cohomological shift of it, is the relative Galois group
Gal(Wn/Wn−1). The full Galois group Gal(Wn/C) is a
homotopical group with πnGal(Wn/Wn−1) = (Un)∨.
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Why don’t we see nonabelian extensions?

Our proof is direct and algebraic. Indeed, a priori there is not a
well-defined algebraic closure. We need to construct it without
knowing its existence, in particular without a general deeper Galois
theory. But what seems to be going on, with hindsight, is:

I If everything works well, then definitely
Gal(Wn/Wn−1) = K(πnGal(Wn/C), n) is abelian.

I Any homotopical group with trivial π0 is solvable.

I Given a categorical spectrum A•, its roots of unity µ(A•) are
some sort of “étale cohomology” of “Spec(A•).” Saying
µ(W•) = IQ/Z is saying that Spec(W•) is a homology point.

I On the other hand, the ordinary Galois group Gal(A0/A0)
measures “étale π1.” Saying W0 = C is saying that
Spec(W•) has the fundamental group of a point.

I Whitehead, Hurewicz: A space with both the homology and
fundamental group of a point is a point.
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Calculating the Galois group

An ordinary absolute Galois group has a cyclotomic character
Gal(K/K)→ Aut(Q/Z) = Ẑ×. Our cyclotomic character lands in
Aut(IQ/Z) = Ŝ×.

Using ideas from (un)gauging in TQFTs, from abelian
Chern–Simons theory, and from surgery theory, we can show:

Theorem (JF–Reutter): The fibre of the cyclotomic character
admits an invariant valued in the L-theory of π-finite spectra. This
invariant an isomorphism in degrees ≥ 5.

Calculating that L-theory, we find a LES (n ≥ 5):

· · · → π−nIQ/Z → Un →


0, n even
Z/2Z, n ≡ 1 (mod 4)
Witt group, n ≡ 3 (mod 4)

→ . . .
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Physics application

By analyzing our LES, and assuming that {gapped topological
phases of matter} assemble into a nice deeper category, we can
show:

Physics Theorem (JF–Reutter): Suppose I is an invertible
(=short range entangled) phase of gapped topological matter. If I
admits a gapped topological boundary condition, then the partition
function of I on stably-framed manifolds is either trivial or an
Arf–Brown–Kervaire invariant. If the partition function of I is any
other invariant of framed manifolds, then I has enforced
gaplessness (=conductivity) on its boundary.
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Credit where it’s due

Idea that VecC → sVecC is an algebraic closure: my “Spin,
Statistics” paper, inspired by jt work with Chirvasitu.

Idea to look for a categorical spectrum with W1 = sVecC and
µ(W•) = I•Q/Z: Hopkins, Freed–Hopkins.

Mod(sVec) is algebraically closed: conjectured by Hopkins;
immediate consequence of my “grouplike” theorem jt with Yu.

Constructing W3: Freed–Scheimbauer–Teleman. They told us
their answer, and we back-solved to find the right question.

Surgery analysis of Galois group: inspired by Lan–Kong–Wen
classification of 4D topological orders.

Narrative in terms of Kummer extensions: inspired by
Burklund–Schlank–Yuan work on chromatic homotopy theory.
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THANK YOU
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