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1 Review: Q-manifolds and Lie algebroid measures

We begin by recalling some of what was said last week.

Definition: We denote by R× (resp. C×) the group of nonzero real (complex) numbers under
multiplication. A Z-graded supermanifold is a supermanifold X with a distinguished (left, say)
R× action, such that the corresponding action on C∞(X)⊗ C extends to a holomorphic action by
C×. Given a vector bundle A→ X, we let πA denote the parity-reverse total space with the usual
R×-action on the fibers, and π−1A the parity-reverse vector bundle with the opposite Z-grading.
We will call the distinguished Z-grading the “cohomological degree.”

A Q-manifold is a supermanifold with a distinguished action by R×nR0|1, such that the R× action
makes the supermanifold Z-graded. We will call the differential of the R0|1 action the Q-structure
or cohomological vector field, and denote it by Q. The letter “Q” is for “cohomology.”

Remark: The reason for asking that the R× action extend to a C× action is to assure that the
eigenvalues for the infinitesimal generator of this action be integers. If we were thinking more
algebraically, we would have used the affine algebraic group scheme Gm, which is defined via
Tannaka duality as the group whose representation theory over a commutative ring R consists of
Z-graded R-modules.
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In all our examples, the Z-grading will agree (mod 2) with the fermionic (Z/2) grading. If the
Z- and fermionic gradings agree, then the algebra of functions on a Q-manifold is a commutative
dga. Allowing the Z- and fermionic gradings to disagree is equivalent to working in the category
of commutative dg super algebras (chain complexes of super vector spaces).

It is common also to ask that the supermanifold contain local charts in which the coordinate
functions are homogeneous for the R× action. ♦

Q-manifolds are a (somewhat rudimentary) language for “derived geometry.” For example, there
are natural notions of the homology of a Q-manifold, whether a map of Q-manifolds is a quasi-
isomorphism, and what a homotopy equivalence of Q-manifolds is. Our interest in Q-manifolds will
be that they provide models of derived stacks.

Definition: A Lie algebroid over X consists of a vector bundle A → X, a vector bundle map
ρ : A → TX, and the structure on Γ(A) of a sheaf of Lie algebras (over R, but not usually over
C∞(X)), such that the Leibniz rule [a, fb] = f [a, b] + ρ(a)[f ] b holds for a, b ∈ Γ(A), f ∈ C∞.
It follows that ρ : Γ(A) → Γ(TX) is a map of (sheaves of) Lie algebras. Lie algebroids are an
infinitesimal version of Lie groupoids.

Let A → X be a Lie algebroid. A representation of A is a quasicoherent sheaf over X which is
simultaneously a sheaf of C∞-modules and a sheaf of Γ(A)-modules, and such that a similar Leibniz
rule is satisfied. For example, C∞ is an A-module, whereas Γ(A) is not. The category of A-modules
is abelian. The derived classifying space or derived quotient X//A is cdga RhomA(C∞,C∞), where
Rhom is the right-derived functor of hom (the one that computes Ext•) — it is defined only up to
homotopy.

For any Lie algebroid A → X, there is a canonically-defined Q-manifold structure on the parity-
reversed total space πA which presents the derived quotient X//A.

Example (Main example): The tangent bundle TX → X is itself a Lie algebroid. The canonical

presentation ofX//TX isXdR
def
= spec(Ω•(X)) = πTX, with the Q-structure encoding the de Rham

d. ♦

The canonically defined Q-manifold presenting a given derived quotient is ill-suited for certain
constructions. Fortunately, we have at our disposal many other presentations of the same derived
quotient:

Theorem (—, DBE): Let Y → X be any graded vector bundle, and A → X a Lie algebroid (or
more generally replace πA by any Q-manifold and πA → X any map of graded manifolds). The
pullback in Q-manifolds YdR×XdR

πA presents the derived quotient X//A (it is homotopy equivalent
to the original Q-manifold).

Remark: This pullback is studied by Gaćıa-Saz and Mehta as an example of a “Lie algebroid
vector bundle”; it is in their language “type 1.” The underlying graded manifold of YdR×XdR

πA is
isomorphic to Y ×XπY ×XπA, but choosing such an isomorphism amounts to choosing a connection
on a certain bundle, and so the isomorphism is not canonical. ♦
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Definition (Weinstein): Let A→ X be a Lie algebroid. Neither A nor TX, nor in fact A∧ rank

nor T∧ dimX, are themselves A-modules. Nevertheless, the ratio of lines (T∗)∧ dim ⊗ A∧ rank is an
A-module in a canonical way. At least when everything is oriented, a Lie algebroid measure on
A → X is an A-invariant section of (T∗)∧ dim ⊗ A∧ rank. One can think of such a section as a
“ratio”: a measure on X divided by a measure on the fibers of A.

Remark: It would be interesting to investigate the derived space Rhom
Ä
C∞, (T∗)∧ dim⊗A∧ rank

ä
,

and see to what extent our constructions generalize. We have not done so. ♦

Example: The de Rham algebroid TX → X has a canonical measure (if everything is oriented).♦

Let A → X be a Lie algebroid. A choice of Lie algebroid measure on A determines a Berezinian
measure on πA which is Q-invariant. It is not invariant under the R× action; rather, it is in
cohomological degree − rankA.

More generally, the Lie algebroid measure determines a Berezinian measure on any presentation
constructed in the theorem above, by multiplying the Berezinian measure on πA with the canonical
measure on the fibers of YdR → XdR. The cohomological degree of this measure on YdR ×XdR

πA
depends on the graded rank of Y . If Y is locally isomorphic to π−1A, then YdR×XdR

πA receives a
Berezinian measure in cohomological degree 0. We remark that, since we are working over R, there
exist non-canonical isomorphisms π−1A ∼= π−1A∗ = (πA)∗.

2 Vol(X//TX) and one side of the Chern–Gauss–Bonnet theorem

In this section we study in detail the canonical Lie algebroid measure on TX → X. We suppose for
convenience that X is oriented. Our goal will be to compute the integral of 1 against this measure
(over the derived stack X//TX). We will see that the correct answer is the Euler characteristic
χ(X). Along the way we will prove (part of) the Chern–Gauss–Bonnet theorem, equating the
integral over X of scalar curvature (for some metric) with the signed count of critical points of a
Morse function.

As we have already said, the Lie algebroid TX → X has a canonical algebroid measure. When X is
oriented, the corresponding measure on πTX = spec(Ω•(X)) is the “integrate top forms” measure.
We instead choose a presentation of the derived stack X//TX for which the Berezinian measure
corresponding to the canonical algebroid measure is in cohomological degree 0. Our choice will be
to take Y = π−1TX in the above theorem.

We choose local coordinates xi on X. Then the corresponding fiber coordinates on πTX we denote
by ξi — under changes of coordinates x  x̃(x), the ξs transform as ξ̃i = ∂x̃i

∂xj
ξj . On Y = π−1TX

we choose fiber coordinates ξ̄, transforming similarly to the ξs. The Lie algebroid pullback is
YdR = πT(π−1TX). Fiber coordinates of this corresponding to the xs we continue to denote by ξ,
and corresponding to ξ̄ we denote by bi. Then the bi do not transform as tensors, but rather under
x x̃ they transform via:

b̃i =
∂x̃i

∂xj
bj +

∂2x̃i

∂xj∂xk
ξj ξ̄k
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or maybe I’m off by a sign. We mention this just to correct something we have often got wrong.
There is an isomorphism πT(π−1TX) ∼= (πT ⊕ T ⊕ π−1T)X, but choosing such an isomorphism
requires choosing a connection.

In any case, the Q-structure on πT(π−1TX) is just the de Rham d:

Q = bi
∂

∂ξ̄i
+ ξi

∂

∂xi

The berezinian measure is

µ = dx1 · · · dxdim dξ1 · · · dξdim dξ̄1 · · · dξ̄dim db1 · · · dbdim

up to a sign convention.

Our goal is now to calculate, or rather to define, the value of∫
πT(π−1TX)

µ.

We immediately run into a problem. The integral does not converge absolutely. Rather, if we
integrate out the fermionic directions, we get zero, whereas the integral in the b direction is infinite.
The BRST argument provides a way to modify the integral into a convergent one, by multiplying
the integrand by exp(Q[f ]) for some f ∈ C∞(πT(π−1TX)) in cohomological degree −1. With luck,∫

exp(Q[f ])µ will converge absolutely. By the BRST argument, provided it converges sufficiently
quickly, the value of

∫
exp(Q[f ])µ is independent of f . (We use the fact that “sufficiently quickly”

is a convex condition in f .)

Where can we find functions in cohomological degree −1? The supermanifold πT(π−1TX) comes
equipped with another piece of structure that we have not discussed. Recall that there is a canonical
isomorphism πT(π−1TX) = Maps(π−1R × πR, X), and that the de Rham cohomological vector
field Q can be thought of as the translation action in the π−1R direction. From this perspective it
is then clear that there is another vector field Q̄ corresponding to translation in the πR direction.
It commutes with itself and with Q, and is in cohomological degree −1. In local coordinates,

Q̄ = −bi ∂
∂ξi

+ ξ̄i
∂

∂xi

Thus one source of functions in cohomological degree −1 is those functions of the form Q̄[f ] for
|f | = 0.

For example, choose a metric gij(x) on X. We claim that f(x, ξ, ξ̄, b) = 1
2gij(x) ξiξ̄j is a globally-

defined coordinate-independent function. Indeed, writing (θ, θ̄) for the coordinate functions on
π−1R× πR and x(θ, θ̄) for a generic map π−1R× πR→ X, we see that f(x) = 1

2〈
∂x
∂θ ,

∂x
∂θ̄
〉g, where

the partial derivatives are evaluated at θ = 0 = θ̄.

Then the BRST argument suggests that, modulo convergence issues,∫
πT(π−1TX)

µ =

∫
πT(π−1TX)

exp
Ä
QQ̄f

ä
µ.
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What the BRST argument actually proves is that, provided the right-hand side converges absolutely,
the value of the right-hand side is independent of f . The function QQ̄f is called the gauge-fixed
action sGF.

So we calculate:

sGF =
1

2
QQ̄
î
gij(x) ξiξ̄j

ó
=

1

2
Q
î
−gij biξ̄j + ∂kgij ξ̄

kξiξ̄j
ó

=

= −1

2
gij b

ibj − 1

2
∂kgij ξ

kbiξ̄j +
1

2
∂kgij b

kξiξ̄j +
1

2
∂kgij ξ̄

kξibj +
1

2
∂l∂kgij ξ

lξ̄kξiξ̄j =

= −1

2
gij b

ibj − Γijk ξ
iξ̄jbk +

1

2
∂l∂kgij ξ

lξ̄kξiξ̄j

where Γijk = 1
2

Ä
∂igjk + ∂jgki − ∂kgij

ä
is the Christoffel symbol for the metric g in the chosen

coordinates.

We can now integrate
∫

exp(sGF)µ as it converges absolutely, provided g is positive definite. Indeed,
the b coordinate appears as a pure Gaussian with negative-definition quadratic part, and so we can
integrate it out:∫

exp(sGF) dx dξ dξ̄ db =

= (2π)dimX/2
∫

exp

Å
1

2
gkk

′
Γijkξ

iξ̄j Γi′j′k′ξ
i′ ξ̄j

′
+

1

2
∂l∂kgij ξ

lξ̄kξiξ̄j
ã

1
√
g

dx dξ dξ̄

We can recognize the exponent as

1

2
gkk

′
Γijkξ

iξ̄j Γi′j′k′ξ
i′ ξ̄j

′
+

1

2
∂l∂kgij ξ

lξ̄kξiξ̄j = −1

4
Rijkl(x) ξiξ̄jξkξ̄l

where Rijkl(x) is the Riemann curvature tensor.

Finally, one recalls the definition of fermionic integration in terms of Pfaffians and what not, and
computes the integral, taking more care than we have been with signs. One gets:∫

πT(π−iTX)
exp(sGF) dx dξ dξ̄ db = · · · = (2π)dimX/2(2π)− dimX

∫
X

(a certain Pfaffian)
√
g dx

If we know the Chern–Gauss–Bonnet theorem, we can immediately recognize the right-hand side
as an expression for the Euler characteristic χ(X). For details, see the thesis by Dan Berwick-
Evans.

3 The other side of the theorem, generalizations, and remarks

Here’s an entirely different way to gauge-fix the integral
∫
πT(π−1TX) µ, which is much closer to the

original Faddeev-Popov approach. We want to write down a gauge-fixed action sGF = Q[f ]. We
choose a 1-form αi(x) dxi on X, and set f = αiξ̄

i.
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(Before we go further, an important remark is in order. When the 1-form α = dh is exact, then
αiξ

i = Q̄[h(x)], so that this choice fits into our above rubric of finding degree-(−1) functions as
Q̄(degree-0 functions).)

Then:
sGF = Q

î
αi(x) ξ̄i

ó
= αi b

i + ∂iαj ξ
iξ̄j

What happens when we integrate out the b variables? If α is real, then
∫

exp(αi b
i) diverges horribly.

But if we switch α 7→
√
−1α to make it pure imaginary, then we have∫

exp
Ä√
−1αi b

i
ä

db = (2π)− dimXδ(αi).

Suppose that α has isolated nondegenerate zeros. Then we can integrating out the ξs at the same
time, recognizing that in combination the integral is a Gaussian. The integral gives a determinant,
and all together we get

Vol = (2π)− dimX(2π)dimX
∫
X
δ(αi) det(

√
−1∂iαj) dx.

But this is just a signed count of zeros of α, up to an overall
√
−1

dimX
. The sign is precisely the

sign of the determinant of ∂iαj , recalling that δ(ax) = 1
|a|δ(x) is positive. Thus we have shown

that an integral of the Pfaffian of curvature of a metric is equal to a signed count of the zeroes of
a 1-form. More care must be taken with the overall constants and so on, but these only depend
on the dimension of X, and can be checked by checking the result on some particular nontrivial
manifold.

One can also consider the situation when the zero locus of α does not consist of isolated non-
degenerate points, but rather of an embedded submanifold of X. If ∂α is nondegenerate in the
directions transverse to the submanifold, then similar arguments also allow to show that the Euler
characteristic of X can be computed in terms of (signed) Euler characteristics of the connected
components of the zero locus of α. For example, we might have α = ∂h where h is a Morse-Bott
function.

Remark: You should probably be a bit concerned by the conditional convergence — the BRST
argument is only really correct when convergence of the integrals is sufficiently strong. A more
honest thing to do is to consider the sum Q[αiξ̄

i + Q̄[1
2gijξ

iξ̄j ]]. Then the integral in b converges
absolutely. Integrating out this part gives

(2π)dim /2
∫

exp

Å
−1

4
Rijkl ξ

iξ̄jξkξ̄l + ∂iαj ξ
iξ̄j − gkl Γijkξiξ̄j αl +

1

2
gij αi αj

ã
1
√
g

dx dξ dξ̄

We can then consider rescaling the family of gauge-fixed actions Q[λαiξ̄
i + Q̄[1

2gijξ
iξ̄j ]], where λ is

some parameter. In the limit as λ→∞, the integral continues to localize on the zeros of α. ♦

Remark: We will conclude this section by making a few more remarks about the operator QQ̄ =
−Q̄Q. It is a composition of commuting vector fields, and so we will call it the BRST Laplacian
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(it has nothing to do with the BV Laplacian that you might have heard about, but no matter).
See, in both computations, at least when α was exact, our gauge-fixed action wasn’t just sGF =
Q[something], but in fact it was QQ̄[something]. We will relate this to path integrals.

Recall that we are integrating over the space πT(π−1TX) = Maps(π−1R × πR, X). Suppose we
have f : Maps→ R. We will begin by describing very explicitly the function QQ̄f .

There is a right action by translation (π−1R× πR)× (π−1R× πR)→ π−1R× πR, and this induces
a left action (π−1R× πR)×Maps→ Maps. Precomposing, we get f : (π−1R× πR)×Maps→ R.
Fix x ∈ Maps(π−1R × πR, X), and consider differentiation f(−,x) in the (π−1R × πR) variables.

Denoting these variables by θ, θ̄, one sees that (QQ̄f)(x) = ∂2

∂θ∂θ̄
f(θ, θ̄,x)

∣∣∣
(θ,θ̄)=0

.

But now let f(θ) be any function of an odd variable θ. It is a general fact about fermionic measures

that
∫
f(θ) dθ = ∂f

∂θ

∣∣∣
θ=0

, up to a sign convention — this is how fermionic measures are defined.

So what we see is the following. To the function f : Maps→ R we have associated a Lagrangian den-
sity for a field theory on π−1R × πR: to a path x, the density at position (θ, θ̄) is f(θ, θ̄,x) dθ dθ̄.
Then the gauge-fixed action QQ̄f is precisely

∫
π−1R×πR f(θ, θ̄,x) dθ dθ̄, the action for the corre-

sponding Lagrangian density. Conversely, to a Lagrangian density f(θ, θ̄,x) the corresponding
gauge fixing condition is f(0, 0,x). All together, we have constructed a correspondence between,
on the one hand, (“time” independent) Lagrangians for a path integral over π−1R × πR whose
paths are valued in X, and, on the other hand, gauge-fixings of the trivial action on πTX of the
form sGF = QQ̄[something]. ♦
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