How to Build a Hopf Algebra

Theo Johnson-Freyd, Perimeter Inst. & Dalhousie U., SCGCS Annual Meeting, 20 Nov 2025, Simons Foundation

Based on arXiv:2508.16787, joint with David Reutter

These slides:

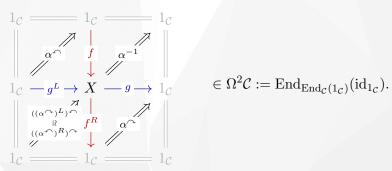
https://categorified.net/Hopf-SimonsFoundation.pdf

Table of contents

- ► Introduction
 - 1. Statement of the Main Theorem
 - 2. Incoherent topological unpacking of Main Theorem
 - 3. Incoherent topological description of Hopf axioms
 - 4. Dangers of incoherent topological unpacking
- ► Technical ingredients
 - 5. (∞, n) -categories
 - 6. The lax tensor product \otimes
 - 7. Pictures of ⊗
 - 8. More pictures of \otimes
 - 9. Lax and oplax natural transformations
 - 10. Further ingredients: localization and \oslash
- Main construction
 - 11. Monad ⊘ Monad = Bialgebra
 - 12. Incoherent pictures of Mnd ⊘ Mnd = Bialg
 - 13. (-) \otimes Adjunction and Adjunction \otimes (-)
 - 14. Adj ⊘ Adj → Retract → coherence proof
 - 15. The antipode axiom
 - 16. Proof of existence of antipode

Statement of the Main Theorem

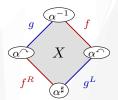
Main Theorem (JF-Reutter): Let $(\mathcal{C},1_{\mathcal{C}}\in\mathcal{C})$ be a pointed $(\infty,3)$ -category. Given a retract $(1_{\mathcal{C}}\overset{f}{\to} X\overset{g}{\to} 1_{\mathcal{C}},\ \alpha:\mathrm{id}_{1_{\mathcal{C}}}\overset{\sim}{\to} gf)$, if f is a left adjoint, g is a right adjoint, and the canonical 2-morphism $\alpha^{\curvearrowleft}:f^{R}\Rightarrow g$ is a right adjoint (equiv. canonical 2-morphism $\alpha^{\curvearrowleft}:g^{L}\Rightarrow f$ is a left adjoint), then



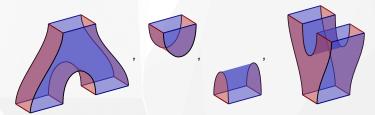
is a bialgebra, and its opposite bialgebra is Hopf (admits an antipode which is not necessarily invertible).

Incoherent topological unpacking of Main Theorem

Poincaré-dually, the composite is a square with alternating boundary conditions:



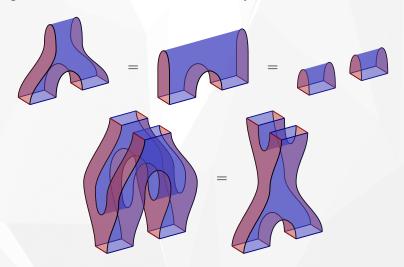
The multiplication, unit, counit, and comultiplication are:



Compare: Reutter 2017, Freed-Teleman 2022, Dimofte-Niu 2024.

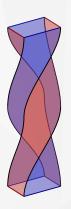
Incoherent topological description of Hopf axioms

Graphically, the retract axiom $id_{1_{\mathcal{C}}} \stackrel{\sim}{\Rightarrow} gf$ says that bigons, and bigonal holes, can be created and destroyed.



Dangers of incoherent topological unpacking

- ► Tracking framing data is annoying.
- Calculus of defects not rigorously established.
- ▶ Bialgebra axioms hold up to homotopy for top'l reasons. Want them ∞-coherently.
- $\blacktriangleright \ \ \mathsf{Want} \ \mathbf{Ret}^{\mathrm{adj}}(\mathcal{C}) \to \mathbf{Hopf}(\Omega^2\mathcal{C}) \ \text{as a functor}.$
- We do not require full adjunctibility. Without full adjunctibility, cannot produce the antipode as a bordism.
- This is a feature: we can get every Hopf algebra in every presentably braided monoidal $(\infty, 1)$ -category, including ones with noninvertible antipode.



What the antipode wants to be, but isn't without full adjunctibility.

$$(\infty, n)$$
-categories

Inductive definition:

$$\mathbf{Cat}_{(\infty,n)} := \{ \text{categories enriched in } \mathbf{Cat}_{(\infty,n-1)} \}.$$

 $\mathbf{Cat}_{(\infty,\infty)}$ is the $n\to\infty$ limit. Technically:

$$\mathbf{Cat}_{(\infty,\infty)} := \mathbf{Sheaves}\left(igcup_{n o \infty} \mathbf{Cat}_{(\infty,n)}
ight).$$

Picture (∞, ∞) -categories as oriented cell complexes, with a k-cell for each generating k-morphism, oriented from source to target.

The lax tensor product \otimes

Want to orient a product of oriented cell complexes. I.e. given cells $a \in A, b \in B$, which direction points $a \otimes b \in A \otimes B$? Strategy: Oriented cell complex $A \leadsto$ chain complex $C_*(A)$, via $\partial a = \mathrm{target}(a) - \mathrm{source}(a)$; ask $C_*(A \otimes B) = C_*(A) \otimes C_*(B)$, of course with $\partial (a \otimes b) = \partial a \otimes b + (-1)^{\dim a} a \otimes \partial b$.

Theorem (Campion): $\mathbf{Cat}_{(\infty,\infty)}$ admits a unique closed monoidal structure \otimes compatible with this strategy.

This \otimes is not symmetric: $A \otimes B \ncong B \otimes A$ in general. Rather, $B \otimes A = (A^{\operatorname{op}} \otimes B^{\operatorname{op}})^{\operatorname{op}}$, where $(-)^{\operatorname{op}}$ takes opposites in all odd directions.

If $A \in \mathbf{Cat}_{(\infty,m)}$ and $B \in \mathbf{Cat}_{(\infty,n)}$, then $A \otimes B \in \mathbf{Cat}_{(\infty,m+n)}$.

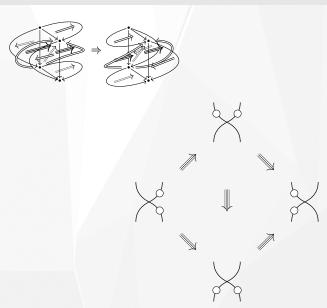
Pictures of \otimes

Pasting diagram Poincaré dual $t(a)\otimes b$ $a \otimes s(b)$ $s(a) \otimes s(b)$ $a \otimes s(b)$ $t(a) \otimes s(b)$ $s(a)\otimes s(b)$ $t(a)\otimes t(b)$ $(s(a) \stackrel{a}{\to} t(a)) \otimes (s(b) \stackrel{b}{\to} t(b))$ $s(a) \otimes b$ $t(a) \otimes b$ $a\otimes b$ $s(a) \otimes t(b)$ $a \otimes t(b)$ $t(a) \otimes t(b)$ $a \otimes t(b)$ $\mathbf{s}(a){\otimes} \pmb{b}$ arrow \otimes 2-cell \Rightarrow \Rightarrow 2-cell ⊗ arrow

(strictly speaking...)

More pictures of \otimes

2-cell ⊗ 2-cell



Lax and oplax natural transformations

If $f,g:A\to B$ are functors of (∞,∞) -categories, a strong natural transformation $\eta:f\Rightarrow g$ chooses a morphism $\eta a:fa\to ga$ for each object $a\in A$, and for each $\alpha:a\to a'$, a naturality isomorphism $(g\alpha)\circ(\eta a)\cong(\eta a')\circ(f\alpha)$. The idea of (op)lax natural transformations is to allow noninvertible naturality morphisms. Fun^{(op)lax}(X,Y):= functors $X\to Y$ and (op)lax natural transfors. These are defined by hom-tensor adjunction:

$$\max(W \to \operatorname{Fun}^{\operatorname{lax}}(X,Y)) = \max(X \otimes W \to Y)$$
$$\operatorname{maps}(W \to \operatorname{Fun}^{\operatorname{oplax}}(X,Y)) = \operatorname{maps}(W \otimes X \to Y).$$

Further ingredients: localization, \otimes , and Ω

 $L_n: \mathbf{Cat}_{(\infty, \infty)} \to \mathbf{Cat}_{(\infty, n)}$, the left adjoint to the inclusion $\mathbf{Cat}_{(\infty, n)} \subset \mathbf{Cat}_{(\infty, \infty)}$, inverts all (> n)-morphisms.

 $\mathbf{Cat}^*_{(\infty,\infty)} := \{ \text{categories equipped with a distinguished object} \}$

The smash product of $(X \ni 1_X), (Y \ni 1_Y) \in \mathbf{Cat}^*_{(\infty,\infty)}$ is

$$X \otimes Y := \frac{X \otimes Y}{X \otimes \{1_Y\} \underset{\{1_X\} \otimes \{1_Y\}}{\sqcup} \{1_X\} \otimes Y}.$$

 \odot is hom-tensor adjoint to strongly pointed functors — $f: X \to Y$ with $f1_X \cong 1_Y$ — and their (op)lax natural transformations.

 $\vec{S}^1 := \mathrm{B}\mathbb{N}$ is the directed circle. The based loop category of $X \in \mathbf{Cat}^*_{(\infty,\infty)}$ is $\Omega X := \mathrm{Fun}^{\mathrm{oplax}}_*(\vec{S}^1,X) = \mathrm{End}_X(\mathsf{basepoint}).$

Monad ⊘ Monad = Bialgebra

A braided monoidal $(\infty,1)$ -category is a monoid object in $\{\text{monoidal }(\infty,1)\text{-categories}\}$. If $\mathcal{C}\in\mathbf{Cat}^*_{(\infty,3)}$, then $\Omega\mathcal{C}$ is a mon. $(\infty,2)$ -cat. and $\Omega^2\mathcal{C}$ is a braided mon. $(\infty,1)$ -cat.

Vague idea: (op)lax monoidal functor is some type of (co)algebra.

 $\operatorname{Mnd} := \operatorname{B}(\operatorname{free} \operatorname{monoidal} \operatorname{1-category} \operatorname{on} \operatorname{an} \operatorname{associative} \operatorname{algebra}).$ In other words, $\operatorname{maps}_*(\operatorname{Mnd},X) = \operatorname{ob} \operatorname{Alg}(\Omega X).$ Define oplax algebra morphisms by $\operatorname{Alg}^{\operatorname{oplax}}(\Omega X) := \operatorname{Fun}^{\operatorname{oplax}}_*(\operatorname{Mnd},X).$

Theorem (Hadzihasanovic, JF-R): If $X \in \mathbf{Cat}^*_{(\infty,3)}$, then $\mathrm{Alg}^{\mathrm{oplax}}(\mathrm{Alg}^{\mathrm{oplax}}(\Omega X)) = \mathrm{BiAlg}(\Omega^2 X)$. Equivalently:

 $L_3(\mathrm{Mnd} \otimes \mathrm{Mnd}) = \mathrm{B}^2(\mathsf{free} \ \mathsf{braided} \ \mathsf{1\text{-}category} \ \mathsf{on} \ \mathsf{a} \ \mathsf{bialgebra}).$

Can think of $Arr \otimes Arr$ as a pasting square. Poincaré dually, it is two wires crossing. Writing in grey the cells that are smashed out, here is a Poincaré dual picture of the generating cell in $\vec{S}^1 \otimes \vec{S}^1$:

$$B =$$

Mnd is generated by \vec{S}^1 and a multiplication 2-cell m (and a unit, omitted). Multiplying m with the generating 1-cell in Mnd gives the two generating 3-cells in Mnd \otimes Mnd:

The bialgebra law $\Delta \circ m = (m \otimes m) \circ (\text{permutation}) \circ (\Delta \otimes \Delta)$ comes from the 4-cell $m \otimes m \in \operatorname{Mnd} \otimes \operatorname{Mnd}$.

(-) \otimes Adjunction and Adjunction \otimes (-)

Adj := free 2-category on an adjunction. There is a canonical inclusion $Mnd \hookrightarrow Adj$ that restricts to endomorphisms of the source of the left adjoint. There is a canonical epimorphism $\ell : Arr \twoheadrightarrow Adj$ that imposes that the arrow is a left adjoint.

Theorem (JF-Scheimbauer, JF-R, Masuda):

- ▶ id $\otimes \ell$: k-Cell \otimes Arr \rightarrow k-Cell \otimes Adj is the epimorphism that imposes that $\partial(k$ -Cell) \otimes Arr factors through $\partial(k$ -Cell) \otimes Adj and also that the (k+1)-dimensional filling is a left adjoint.
- ▶ $\ell \otimes \operatorname{id} : \operatorname{Arr} \otimes k\operatorname{-Cell} \to \operatorname{Adj} \otimes k\operatorname{-Cell}$ is the epimorphism that imposes that $\operatorname{Arr} \otimes \partial(k\operatorname{-Cell}) \leadsto \operatorname{Adj} \otimes \partial(k\operatorname{-Cell})$ and also that the mate of the (k+1)-dim filling is a left adjoint.

Provided f,g are left adjoints, the mate of $\phi:f\Rightarrow g$ is the canonical map $\phi^{\frown}:g^R\Rightarrow f^R$.

Adj ⊘ Adj → Retract → coherence proof

Corollary: $L_3(\mathrm{Adj} \otimes \mathrm{Adj}) = \text{the free 3-category on a retract}$ $\left(1_{\mathcal{C}} \xrightarrow{f} X \xrightarrow{g} 1_{\mathcal{C}}, \ \alpha : \mathrm{id}_{1_{\mathcal{C}}} \stackrel{\simeq}{\Rightarrow} gf\right)$ in which

- ightharpoonup f is a left adjoint and g is a right adjoint,
- ▶ and the canonical 2-morphism $\alpha^{\curvearrowleft}: f^R \Rightarrow g$ is a right adjoint, equiv. canonical 2-morphism $\alpha^{\curvearrowleft}: g^L \Rightarrow f$ is a left adjoint.

Main coherence statement: $\mathrm{Mnd} \hookrightarrow \mathrm{Adj}$ and so

$$\underbrace{L_3(\operatorname{\mathsf{Mnd}} \otimes \operatorname{\mathsf{Mnd}})}^{\operatorname{\mathsf{walking bialgebra}}} \to \underbrace{L_3(\operatorname{\mathsf{Adj}} \otimes \operatorname{\mathsf{Adj}})}^{\operatorname{\mathsf{walking adjunctible retract}}}$$

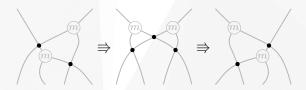
$$\underbrace{Eun^{\operatorname{oplax}}(L_3(\operatorname{\mathsf{Mnd}} \otimes \operatorname{\mathsf{Mnd}}), \mathcal{C})}_{\operatorname{\mathbf{BiAlg}}(\Omega^2\mathcal{C})} \leftarrow \underbrace{\operatorname{\mathsf{Fun}}^{\operatorname{oplax}}(L_3(\operatorname{\mathsf{Adj}} \otimes \operatorname{\mathsf{Adj}}), \mathcal{C})}_{\operatorname{\mathbf{Ret}}^{\operatorname{\mathsf{adj}}}(\mathcal{C})}$$

The antipode axiom

A bialgebra B is Hopf if and only if the shear map

$$B\otimes B\xrightarrow{\Delta_B\otimes \mathrm{id}_B} B\otimes B\otimes B\xrightarrow{\mathrm{id}_B\otimes m_B} B\otimes B$$

is invertible. In $\operatorname{Mnd} \otimes \operatorname{Mnd}$, the universal shear map looks like:



The bialgebra B is the intersection point. The light gray shows the cells in $\operatorname{Mnd} \otimes \operatorname{Mnd}$ that are smashed out in $\operatorname{Mnd} \otimes \operatorname{Mnd}$.

Theorem: The universal shear map inverts when sent via $\mathrm{Mnd}\otimes\mathrm{Mnd}\to\mathrm{Adj}\otimes\mathrm{Adj}$ and 3-localized.

Proof of existence of antipode

Theorem: The universal shear map inverts when sent via $\mathrm{Mnd} \otimes \mathrm{Mnd} \to \mathrm{Adj} \otimes \mathrm{Adj}$ and 3-localized. **Proof:**

