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It’s a pleasure to speak here. Everything I will say is joint work in progress with David Reutter.
We’ve been talking about parts of this project for a while now, so many of you have seen other
parts of the story. My hope, even for those of you who do know what we’re doing, is to tell you
another aspect of it.

These written notes are really for the speaker’s benefit. In the talk itself, I might cover less or
different material.

1. All the semisimple 1-categories

Let k be a field, of characteristic zero to make things easier. Let’s list all the finite semisimple
1-categories over k — i.e. the space of objects of 2Veck. I will write this as V2 := Mod2

k, where
I write Mod for the finitely generated projective modules. I’ll also write V := Veck, so that
V2 = ModV .

Well, given C ∈ V2, I can decompose it canonically as a direct sum C =
⊕
Ci where i ranges over

the simple factors of the commutative algebra End(idC) =: Ω End C. Moreover, Ci = ModAi for
some canonical division ring Ai, and the centre of Ai is the corresponding summand of Ω End C.
Said better: C “spreads out” canonically over the k-scheme Spec(Ω End C) as a gerbe. How to
classify division rings? You prescribe the centre L, which is some finite-degree field extension of k,
and then ask for a class in the Galois cohomology H2

Gm
(L). Let’s write all these data together in

terms of Galois descent. Let k̄ denote the algebraic closure of k; then Spec(Ω End C)(k̄) is a finite
set X and, by semisimplicity, completely determines Ω End C ⊗ k̄; the scheme Spec(Ω End C) is the
same data as this set X together with an action by Gal(k̄/k); the gerbe is a G-equivariant twisted
cohomology class on X valued in Gm(k̄) = k̄× (with its canonical G-action). All together, we find
an equivalence of spaces:

obV2 = {finite set X with Gal(k̄/k)-action and Gal(k̄/k)-equiv H2
k̄×-class}

Is this computable? It requires you to know the Galois group G and the cyclotomic character, and
it requires you to be good at computing cohomology of profinite groups. Which is hard, but at
least it’s all “classical” algebraic topology. All the field/linear/noninvertible stuff has been gotten
rid of.

What if we wanted to know all the semisimple supercategories, or more generally the categories
tensored-and-enriched over some symmetric fusion category E? This is still a “Galois” problem. It
turns out that, even if k̄ is algebraically closed as a zero-categorical ring, Veck̄ = Modk̄ is not
algebraically closed. What I mean by this is the following: by the Nullstellensatz, a commutative
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ring R is an algebraically closed field if and only if every sufficiently-finite nonzero commutative ring
map R → S splits. Well, Veck̄ → sVeck̄ is definitely finite, and definitely does not split. On the
other hand, Deligne’s existence of super fibre functors says that sVeck̄ is algebraically closed, and
Tannakian duality can be thought of as the statement of Galois descent, so that Veck̄ → sVeck̄ is
a Galois extension. Going higher, let’s write Wn for the algebraic closure of Vnk : so W0 = k̄ and
W1 = sVeck̄. It turns out that W2 = ModW1 = {super algebras and superbimodules over k̄}.
Pick up an object C ∈ W2. Again it decomposes canonically as a sum of simples, indexed by
Spec(Ω End C) — that’s a priori a commutative superalgebra over k̄, but it’s semisimple, so it’s
still just an algebra over k̄, and the spectrum is just a set — and moreover in W2, all simples
are invertible, i.e. elements of Gm(W2). That’s some symmetric monoidal 2-groupoid. Who is it?
Well, you know that π2Gm(W2) = π0Gm(W0) = k̄×. You also know that π1Gm(W2) is the set of
invertible super vector spaces, i.e. the even and odd lines, and π0Gm(W2) is the Morita classes of
invertible superalgebras Cliff(0) and Cliff(1).

This list k̄×,Z/2Z,Z/2Z is familiar: it is the character groups of the stable homotopy groups
of spheres. This is not a coincidence. Suppose that you have a symmetric monoidal n-groupoid T ,
and all you know about it is that πnT = k̄×. What are the possible T s that it could be? What
are the universal choices? Consider the higher category of all such T ’s, and look at its homotopy
1-category. This homotopy 1-category has an initial object: Hn

k̄×
. That’s pretty obvious: that’s the

groupoid K(k̄×, n) with its canonical symmetric monoidal structure, and when I said πnT = k̄×,
I could have said that there was a map K(k̄×, n) → T (since T is an n-groupoid by assumption).
Are there any other universal T ’s? It turns out that, using the fact that k̄× is a divisible and hence
injective abelian group, this category also has a terminal object, denoted In

k̄×
. It is characterized by:

for any symmetric monoidal n-groupoid A, hom(A, In
k̄×

) = hom(πnA, k̄
×), where the LHS means

homs in the homotopy category of symmetric monoidal n-groupoids, and the RHS means homs of
abelian groups. By testing against (truncations of suspensions of) the sphere spectrum, you find
that πm In

k̄×
is the character group of the (n−m)th stable homotopy group of spheres.

In particular, if all we know about W2 is that W0 = k̄, then we already know that Gm(W2)
admits a canonical [in the homotopy category] map to I2

k̄×
. Then computing with superalgebras

can show that this map is an isomorphism.
Ok, so what do we find?

obW2 = {finite set X plus a class in I2
k̄×(X)}

This is an equivalence of spaces in the following sense: the fundamental group at (X,ω) is I1
k̄×

(X),

etc. Suppose you care about, say, ob E2 for some symmetric fusion 2-category E2. Well, E2 →W2

is Galois, and

ob E = {finite set X with a Gal(W2/E2)-action plus a Gal-equivariant class in I2
k̄×(X)}.

For example, Gal(W2/V2) = Gal(W1/V1), and if k = k̄ was already algebraically closed then this
is just a BZ/2Z. So it must act trivially on the set X, and the equivariance is just fixed data on

the class in I2
k̄×

(X). But (I2
k̄×

)BZ/2Z = H2
k̄×

, and you recover the earlier description. Warning:
these formulas become more complicated as you increase “2”.

2. All the semisimple 3-categories

Let’s temporarily skip over the 2-categories, and jump to obV4 = {finite semisimple 3-categories}.
My strategy will be: work out the algebraic closure; conclude the answer through Galois descent.
I’ll write W4 for the algebraic closure of V4.

Pick up C ∈ obW4 (or obV4 for that matter). We can decompose it into a sum of simples indexed
by the set Spec(Ω3 End C). Dimension count: C is a 3-category, so End C is a monoidal 3-category,
so Ω3 End C is a monoidal 0-category i.e. a ring. In the 1D case, we implicitly used that when C is
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a 1-category, Ω End C is an E2-algebra and hence commutative. Now we have more commutativity:
the monoidal 1-category Ω2 End C is actually E3-monoidal, and so again commutative.

I already mentioned Tannakian duality: commutative monoidal 1-categories are “the same” as
groupoids. This is more sharply true over W1 than over V1: for the latter, you need to remember
some “emergent fermion” information, which is the Galois descent data.

So, if I pick up C ∈ obW4, then I get this canonical finite 1-groupoid X = Spec(Ω2 End C). And
C canonically “spreads out” over X: there is a bundle over X whose global sections are C, and
the fibres Cx of this bundle have Spec(Ω2 End C) = pt. In the previous case, I used that, once I’m
algebraically closed, a simple 1-category was invertible. The statement now is: if(f) Cx ∈ obW4

has Spec(Ω2 End Cx) = pt, then Cx is invertible.
What do we know about the invertibles in W4? Well, we do know that they form a symmetric

monoidal 4-groupoid Gm(W4), and that π4Gm(W4) = k̄×, and the homotopy category of these has
a terminal object I4

k̄×
, so you do get a canonical comparison map Gm(W4)→ I4

k̄×
.

Fact: Algebraic closedness of Wn implies that the canonical comparison map Gm(Wn) → In
k̄×

is an isomorphism (on torsion subgroups1). In fact, this almost characterises W:
Theorem [JF–Reutter]: Wn is uniquely determined by:

(1) W• is an inductive limit of finite semisimple extensions of V•.
(2) The canonical (in the homotopy category) map W1 → sVeck̄ is an isomorphism.
(3) The canonical (in the homotopy category) map Gm(W•)→ I•

k̄×
is a (torsion) isomorphism.

All together, you find:
Corollary:

obW4 = {finite groupoid X with class in I4
k̄×(X)}

obV4 = {finite groupoid X with action by Gal(W4/V4) and Gal-equivariant class in I4
k̄×(X)}

There is still the problem of computing the Galois group. But at least it tells you that the
problem is answerable in classical homotopy theory. Note that only the 1-type of Gal(W4/V4) can
act nontrivially on X; so the 2-connective cover, since it acts trivially on X, just is reducing the
cohomology problem from I4

k̄×
(X) to whatever the fixedpoint spectrum is.

A version of this Corollary was stated by Lan–Kong–Wen.

3. All the semisimple (2n− 1)-categories

Exactly the same approach handles W2n. You pick up C ∈ obW2n. You look at Ωn End C. This
is En+1-monoidal of category number n − 1, hence commutative, hence there is an (n − 1)-type
X = Spec(Ωn End C). C spreads out as a bundle over X whose fibres Cx have Spec(Ωn End Cx) = pt.

Theorem [JF-R]: C ∈ obW2n is invertible iff Spec(Ωn End C) = pt.
Corollary:

obW2n = {finite (n− 1)-groupoid X with class in I2n
k̄×(X)}

and the V2n-case is accessible by Galois descent.
Here is the basic idea of the Theorem. End C, being a full “matrix” algebra, satisfies a nonde-

generacy aka “trivial centre” condition. It is filtered by Ωk End C, and there is a sort of “associated
graded” Ωk End C/Ωk+1 End C, which is a finite set that we denote πk End C. The theorem is that
the “associated graded” sets have a pairing on them πk End C ×πn−1−k End C → k̄, and the nonde-
generacy condition implies (and is equivalent to) this pairing being an invertible and in particular
square matrix. So this is a “Poincaré duality” statement for objects in W2n. But if Ωn End C is

1One would prefer a statement which gave an isomorphism full stop. But it isn’t. It turns out that there is some
nontorsion in Gm(Wn): ignoring the stuff in degree 0, we have Gm(Wn)⊗Q = Hn−4

Q∞ . It is concentrated in just one
degree, and it’s there for basically the same reason that topology in dimension 4 is wild. Since all my spaces will be
(π-)finite and my Galois groups will be pro(-π-)finite, they will not be able to see this difference.
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trivial, then half of the πk End C’s are trivial, and so the other half are trivial by Poincaré duality,
and so C has trivial endomorphisms, and so C is invertible.

4. What about higher gauge theories?

Look again at that Corollary. What if you started with a higher groupoid X which was not
(n− 1)-truncated? You could still pick a class ω ∈ I2n

k̄×
(X) — this is some “higher gerbe” data —

and look at its global sections. The Corollary says that the space you get also has a description in
terms of some other (n− 1)-truncated groupoid X ′.

You know this in practice. Let’s look when n = 2 and X = BG for a finite group G, and look
at the case when ω ∈ H2

k̄×
(X). Then what you end up computing is the category of ω-projective

representations of G, equivalently the module category for the twisted group algebra k̄ω[G].
It’s possible for this category to be equivalent just to Vec. Indeed, that happens precisely

when there is a unique irreducible ω-projective representation. Here’s an example. Suppose that
G = A is an abelian group. Then it is a classical fact that H2

k̄×
(BA) ∼= Alt2(A∨) is the space of

k̄×-valued alternating 2-forms on A — bilinear forms on A such that ω(a, a) = 1 for all a ∈ A.
The “unique irrep” condition is equivalent to asking ω to be nondegenerate: the induced map
A→ A∨ = hom(A, k̄×) sending a 7→ ω(a,−) is an iso.

If I do write down a twisted group algebra, then not only do I have its potentially-trivial cat-
egory of modules, but also I have its regular module. Let’s suppose that A is abelian and ω is
nondegenerate, and that I choose a trivialization of this category. (There’s a Bk̄×-torsor worth of
choices there.) Once I’ve done this, then I get the trivial category Vec equipped with a nontrivial
element. You can work out which element it is up to isomorphism: A necessarily has dimension d2

for some d ∈ N, and you get the d-dimensional vector space this way.
For every d, there is an abelian group with a nondegenerate alternating form of dimension d2.

So we accidentally produced all the (nonzero) vector spaces this way. We didn’t quite get an exact
list. . . .

5. Abelian Chern–Simons theories

Let’s do this again but now for arbitrary n. Rather than using an (n − 1)-groupoid with an
I2n
k̄×

-class, let’s try a K(A,n). Since K(A,n) is pointed, it’s natural to split any cohomology

E(K(A,n)) = E(pt) ⊕ Ẽ(K(A,n)), where Ẽ denotes the cohomology classes trivialized at the

basepoint. It’s really H̃2 that classifies twisted group algebras, but you didn’t notice the difference
because H2(pt) = 0.

Proposition [JF-R]: Ĩ2n
k̄×

(K(A,n)) = skewn Sym2(A∨) is the space of (skew)n-symmetric bilin-
ear forms on A. In other words, it is the space of symmetric or skew-symmetric forms depending
on n. My bilinear forms are always valued in k̄×, and the axiom is that ω(b, a) = ω(a, b)(−1)n .
Technique: Goodwillie calculus.

Example: We said already that H2(K(A, 1)) is the space of alternating forms, and classifies

twisted group algebras. Ĩ2 classifies twisted group superalgebras. A skew form might not be
alternating: ω(a, a) just has to be in ±1 and not necessarily 1. This number ω(a, a) records whether
the a-graded piece of the group superalgebra is bosonic or fermionic. For instance, A = Z/2Z
admits a nondegenerate (!) skew form ω(a, b) = (−1)ab. Its twisted group algebra is Cliff(1), which
is invertible but not Morita trivial.

Example: You surely know Eilenberg and Mac Lane’s fact that H4(K(A, 2)), which classifies
braided fusion categories with fusion rules A, is precisely the space of quadratic forms on A. I’m
telling you that Ĩ4(K(A, 2)) is the space of symmetric bilinear forms. The map H4(K(A, 2)) →
Ĩ4(K(A, 2)) is surjective but not injective. For example, it identifies Vec[Z/2Z] and sVec; it
identifies the semion with the antisemion. The symmetric bilinear form that you remember is
precisely the S-matrix; what you forget is the T-matrix.
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Remark: I’ve stated the Proposition at the level of sets — I’ve told you π0 of the space of
Ĩ2n-classes. At the level of spaces, there is only one other homotopy group: πn = A∨.

Theorem: Pick ω ∈ Ĩ2n
k̄×

(K(A,n)). The space
∫
K(A,n) ω of global sections of this gerbe is

invertible (in W2n) iff ω is nondegenerate in the sense that the induced map A 7→ A∨ is an iso.
But the invertibles in W2n were I2n. So what we have is a fancy map

{finite abelian groups with nondegenerate (skew)symmetric bilinear form} → I2n .

This map turns out to be a sort of “Gauss sum” map, and the invertibility turns out to boil down
to the invertibility of Gauss sums.

6. All the semisimple (2n− 2)-categories

Actually, it turns out that
∫
K(A,n) ω is almost always not only invertible but actually trivializable.

(Proof: Compute all answers, and cite hard results about I2n.) There’s a difference, of course,
between “trivializable” and “trivialized.” Anyway, pick a trivialization of

∫
K(A,n) ω.

On the other hand, because ω started out as trivialized at the basepoint in K(A,n), there is a
section of this bundle — it is a “delta function” or “skyscraper sheaf” or whatever you want to call
it at the basepoint. So that’s an element of

∫
K(A,n) ω ∈ W

2n, which I’ve trivialized. So that’s an

element of W2n−1.
All together, we get a map{

finite abelian group A with a (nondegenerate) class ω ∈ Ĩ2n(K(A,n))

and a trivialization of

∫
K(A,n)

ω ∈ I 2n

}
→ obW2n−1.

Let me give a name to the LHS. I’ll call it gauss2n. I invite suggestions for better names.
Remark: If you replace “2n” with an odd number m, then you’d be asking about “K(A, odd2 )”,

and there aren’t any of those. Well, there’s one of them: pt counts. The trivialization of
∫

pt 1 ∈ is

a choice of element in Im−1. So really you have this fibre sequence

I•−1 → gauss• → {K(A, •/2) with a nondegenerate class ω ∈ Ĩ•(K(A, •/2))}.

Finally, pick up a generic C ∈ obW2n−1. Look at Ωn End C. This is an En+1-monoidal (n− 2)-
category, and hence commutative, and hence its spectrum is an (n − 2)-type, and C spreads out
over this spectrum. The fibre Cx at x ∈ X = Spec(Ωn End C) has Spec(Ωn End Cx) = pt.

Theorem [JF-R]: Suppose that n ≥ 2. Then, Spec(Ωn End C) = pt iff C is in gauss2n.
Corollary: If n ≥ 2,

obW2n−1 = {(n− 2)-type X with a map X → gauss2n}.

7. What about the Galois group?

The same techniques tell us a lot about Gal(W/V). I’ll just report the answer. There was this
“cyclotomic character” B Gal(W•/V•)→ B Aut(I•). The fibre of this map has a map to (the dual
to) the “L-theory” whose cocycles are gauss. This map is almost an isomorphism: it fails only in
dimension ≈ 4. In principle, this should supply a complete description of obVn, subject to your
ability to run spectral sequences.



6 THEO JOHNSON-FREYD

8. What fails in low dimension?

If you want to understand W1 or W3, this method fails basically because matrix algebras and
nondegenerate braided fusion categories don’t come with canonical gradings by abelian groups.
For example, the simple objects in V3 are exactly classified by Morita equivalence classes of fusion
categories; recall that two fusion categories are Morita equivalent iff their Drinfeld centres are
isomorphic, so that the set of simples in V3 is the set of Witt-trivializable braided fusion categories.
What my method gives you is are just (those fusion categories whose Drinfeld centres are) the
“pointed” (grouplike fusion) categories.

The magic in higher dimensions is that the “pointedness” / grouplike fusion is automatic. At
the end of the day, it’s basically the same magic as the classical fact that higher homotopy groups
are abelian, although the relation is a bit roundabout. The W1 and W3 cases are the nonabelian
π0 and π1, and the doubling is the Poincaré duality.
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