Deformation Quantization Exercise Sheet 3

Ján Pulmann

! marks a more important exercise

Exercise 1 (Jacobi in three coats). Recall that the Poisson bracket $\{\cdot, \cdot\}$ on $C^{\infty}(M)$ can be encoded in a "bivector" $\pi = \pi^{ij} \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j}, \pi^{ij} = \{x^i, x^j\}$

1. Show that Jacobi for $\{\cdot, \cdot\}$ is equivalent to $[\pi, \pi] = 0$.

Use

- [f, X] = -X(f) for X a vector field and f a function
- graded Jacobi identity
- $[g, [f, \pi]] = \{f, g\}$

If $\{\cdot, \cdot\}$ comes from a non-degenerate 2-form ω (via $\{f, g\} = X_f g = i_{X_f} \omega$), show that Jacobi for $\{\cdot, \cdot\}$ is equivalent to closedness of ω . Use the Cartan magic formula

$$\mathcal{L}_X = i_X d + di_X$$

and also

$$\mathcal{L}_X i_Y = i_{[X,Y]} + i_Y \mathcal{L}_X.$$

Exercise 2 (Maurer-Cartan elements).

- 1. Convince yourselves that one can identify formal Poisson bivector fields $\pi \in T^1_{poly}(M)[[\hbar]]$ with MC elements in $\hbar T_{poly}(M)[[\hbar]]$
- 2. Describe gauge-equivalence geometrically.
- D_{poly} :
 - 3. [!] Again, convince yourselves that one can identify star products deforming m_0 with MC elements in $\hbar D_{poly}(M)[[h]]$.
 - 4. Prove that the notion of gauge equivalence of these MC elements coincides with our notion of equivalence of star products.

Hint: write the MC gauge equivalence ODE for the sum

$$m = m_0 + \underbrace{(\hbar m_1 + \hbar^2 m_2 + \ldots)}_{\text{MC element}}$$

Show that this ODE is satisfied by $g_t \circ m \circ g_t^{-1} \otimes g_t^{-1}$ for $g_t = e^{t\lambda}$, $\lambda \in \hbar D^0_{poly}(M)[[h]]$.